首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Powders of a Pb(Zn1 / 2W1 / 2)O3-introduced BaTiO3-PbTiO3 system were prepared. A two-step calcination route of a B-site precursor method was employed to promote perovskite formation. The overall effects of the Pb(Zn1 / 2W1 / 2)O3 incorporation on changes in crystalline aspects as well as dielectric properties were explored.  相似文献   

2.
The microwave dielectric properties and microstructures of CuO-doped Nd(Zn1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route were investigated. The prepared Nd(Zn1/2Ti1/2)O3 exhibits a mixture of Zn and Ti showing 1:1 order in the B-site. As an appropriate sintering aid, not only did CuO lower the sintering temperature, it could effectively hold back the evaporation of Zn in the Nd(Zn1/2Ti1/2)O3. Moreover, CuO only resided in boundaries, which was confirmed by EDX analysis. The measured lattice parameters of CuO-doped Nd(Zn1/2Ti1/2)O3 (a = 5.4652 ± 0.0005 ?, b = 5.6399 ± 0.0007 ?, c = 7.7797 ± 0.0008 ? and β = 90.01 ± 0.01°) retained identical to that of the pure Nd(Zn1/2Ti1/2)O3 in all cases. In comparison with the pure Nd(Zn1/2Ti1/2)O3 ceramics, specimen with 1 wt.% CuO addition possesses a compatible combination of dielectric properties with a εr of 30.68, a Q × f of 158,000 GHz (at 8 GHz) and a τf of − 45 ppm/°C at 1270 °C. It also indicated a 60 °C lowering in the sintering temperature. The proposed dielectrics can be a very promising candidate material for microwave or millimeter wave applications requiring extremely low dielectric loss.  相似文献   

3.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

4.
The solid-state mixed oxide method via a rapid vibro-milling technique is explored in the preparation of single-phase Zn3Nb2O8 powders. The formation of the Zn3Nb2O8 phase in the calcined powders has been investigated as a function of calcination conditions by TG-DTA and XRD techniques. Morphology, particle size and chemical composition have been determined via a combination of SEM and EDX techniques. It has been found that the minor phases of unreacted ZnO and Nb2O5 precursors and the columbite ZnNb2O6 phase tend to form together with the Zn3Nb2O8 phase, depending on calcination conditions. It is seen that optimization of calcination conditions can lead to a single-phase Zn3Nb2O8 in a monoclinic phase.  相似文献   

5.
The sintering behavior and dielectric properties for perovskite Ag(Nb0.8Ta0.2)O3 ceramic with Sb2O5 doping was explored. A small amount of Sb2O5 (2.5 wt.%) led to high densification at temperatures < 1060 °C. The dielectric constant increased and the temperature coefficient decreased with increasing concentration of Sb2O5, and the dielectric constant reached 673, combined with a low temperature coefficient of 147 ppm/°C, and dielectric loss of 0.0044 (at 1 MHz) for the sample with 3.5 wt.% Sb2O5 sintered at 1080 °C.  相似文献   

6.
A monoclinic phase of zinc niobate, Zn3Nb2O8, nanopowder was synthesized by a solid-state reaction via a rapid vibro-milling technique. The effect of milling time on the phase formation and particle size of Zn3Nb2O8 powder was investigated. The formation of the Zn3Nb2O8 phase in the calcined powders has been investigated using DTA and XRD techniques. Morphology, particle size and chemical composition have been determined via a combination of SEM and laser diffraction techniques. It was found that an average particle size was achieved at 20 h of vibro-milling after which a higher degree of particle agglomeration was observed on continuation of milling to 30 h. In addition, by employing an appropriate choice of the milling time, a narrow particle size distribution curve was also observed.  相似文献   

7.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

8.
Using zinc naphthenate and titanium tetra isopropoxide (1:1 mol.%) dissolved in ethanol as precursors, single phase Zn2TiO4 nanoparticles were synthesized by the flame spray pyrolysis technique. The Zn2TiO4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The average diameter of Zn2TiO4 spherical particles was in the range of 5 to 10 nm under 5/5 (precursor/oxygen) flame conditions. All peaks can be confirmed to correspond to the cubic structure of Zn2TiO4 (JCPDS No. 25-1164). The SEM result showed the presence of agglomerated nanospheres with an average diameter of 10-20 nm. The crystallite sizes of spherical particles were found to be in the range of 5-18 nm from the TEM image. An average BET equivalent particle diameter (dBET) was calculated using the density of Zn2TiO4.  相似文献   

9.
Pb(Zn1/3Ta2/3)O3 ceramics, compositionally modified by the incorporation of Fe to the octahedral lattice sites, were prepared and characterized in terms of perovskite development, dielectric properties, as well as microstructure evolution. The powders of the B-site precursor compositions were synthesized separately and reacted with PbO to form Pb[(Zn1/3Ta2/3),(Fe1/2Ta1/2)]O3. The perovskite contents increased continuously with the Fe concentration. The maximum dielectric constant values of the ceramics increased tremendously with the fraction of Fe, whereas the dielectric maximum temperatures were rather insensitive to the compositional change.  相似文献   

10.
For the first time, we have grown ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Fe1/2Nb1/2)O3 (PMN-PT-PFN) from the melt by the simple slow cooling process. The chemical composition of the single crystals PMN-PT-PFN (0.59/0.31/0.10) is near the morphotropic phase boundary (MPB). X-ray diffraction (XRD) was used to study phase structure of the as-grown crystals, energy dispersive X-ray spectrometer (EDS) and electron probe micro-analyzer (EPMA) were employed to confirm the chemical composition and element distribution of the as-grown crystals, respectively. The ferroelectric, dielectric and piezoelectric properties of the as-grown PMN-PT-PFN (0.59/0.31/0.10) single crystal oriented along the (0 0 1) axis were measured, which showed that the remnant polarization (Pr), coercive electric fields (Ec), the Curie temperature (Tc) and the piezoelectric coefficient (d33) were 50.2 μC/cm2, 13.9 kV/cm, 158 °C and about 1800 pC/N, respectively. All the results indicated that the PMN-PT-PFN (0.59/0.31/0.10) single crystals are promising for applying to field of high frequency.  相似文献   

11.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

12.
The effect of BaZrO3, MnCO3 additives on the dielectric properties, sintering temperature and microstructure of Ba(Zn1/3Nb2/3)O3 (BZN) and Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 (BSZN) ceramics was studied in this paper. It indicates that both BaZrO3 and MnCO3 can lower the sintering temperature of the ceramics and accelerate the crystallization of BZN and BSZN. The dielectric constant ɛ r increases after MnCO3 added, but decreases when BaZrO3 added alone. The existence of MnCO3 can modulate the temperature coefficient of capacitance τ c toward positive, while BaZrO3, can make c more negative. MnCO3 and BaZrO3 can restrain the appearance of the second phase; while BaZrO3, can prevent the appearance of the superstructure. In the BSZN system, when 1 mass % MnCO3 added, sintering temperature(t s ) is lowered to 1240°C. In this study, the best sample that has the excellent properties is sample 5 with dielectric properties of ɛ r = 43.6, τ c = −8 × 10−6 °C−1 and tan δ = 0.6 × 10−4 (1 MHz). The sintering temperature of BZN and BSZN system can be lowered to less than 1300°C.  相似文献   

13.
Polycrystalline samples of Pb[(1 − x)(Zr1/2Ti1/2) − x(Zn1/3Ta2/3)]O 3 , where x = 0.1–0.5 were prepared by the columbite and wolframite methods. The crystal structure, microstructure, and dielectric properties of the sintered ceramics were investigated as a function of composition via X-ray diffraction (XRD), scanning electron microscopy (SEM), and dielectric spectroscopy. The results indicated that the presence of Pb(Zn1/3Ta2/3)O3 (PZnTa) in the solid solution decreased the structural stability of overall perovskite phase. A transition from tetragonal to pseudo-cubic symmetry was observed as the PZnTa content increased and a co-existence of tetragonal and pseudo-cubic phases was observed at a composition close to x = 0.1. Examination of the dielectric spectra indicated that PZT–PZnTa exhibited an extremely high relative permittivity at the MPB composition. The permittivity showed a ferroelectric to paraelectric phase transition at 330 °C with a maximum value of 19,600 at 100 Hz at the MPB composition.  相似文献   

14.
Qingdong Chen 《Thin solid films》2010,518(20):5683-5686
Within the framework of modified Landau-Devonshire thermodynamic theory, the equilibrium polarization states and physical properties of single-domain Pb(Zr1-xTix)O3 (PZT) thin films epitaxially grown on dissimilar cubic substrates are investigated. The “misfit strain-temperature” phase diagrams are obtained for several different compositions (x = 0.75, 0.65 and 0.55) of PZT films. The presence of stability range of the monoclinic phase is the characteristic feature of these phase diagrams, which separates the stability ranges of the tetragonal phase and the orthorhombic phase. Further analysis shows that the monoclinic phase widens with the increase of Zr content, and meanwhile the center shifts from positive values of the misfit strain towards zero.  相似文献   

15.
Ceramic powders of (Ba,Pb)Pb(Mg1/3Ta2/3)O3 were prepared via a B-site precursor route. Crystal symmetries and lattice parameters were determined. Monophasic perovskite was developed after the two-step reaction process, in which the lattice parameters showed linear changes in the entire composition range. Dielectric responses of the ceramics with compositional and frequency changes were investigated. The results were also compared with the (Ba,Pb)(Zn1/3Ta2/3)O3 data.  相似文献   

16.
Ba(Zn1/3Nb2/3)O3/Ni0.8Zn0.2Fe2O4 (BZN/NZO) composites were synthesized via the conventional solid-state reaction method. The phase composition and surface morphology of the composites were investigated using XRD and SEM, respectively. The dielectric and magnetic properties of the composites were studied. The results show that the BZN/NZO composites have large dielectric constants and very high permeabilities. For the 20%BZN/80%NZO composite, the dielectric constant and permeability in low frequency range are about 8,000 and 18, respectively. The large dielectric behavior of the BZN/NZO composites is mainly attributed to the Maxwell–Wagner polarization.  相似文献   

17.
In the present study, Ni-modified α-Al2O3 with Ni/Al ratios of 0.3 and 0.5 were prepared by sol–gel and solvothermal method and then were impregnated with 0.3 wt.% Pd. Due to different crystallization mechanism of the two preparation methods used, addition of nickel during preparation of α-Al2O3 resulted in various species such as NiAl2O4, mixed phases between NiAl2O4 and α-Al2O3, and mixed phases between NiAl2O4 and NiO. As revealed by NH3-temperature programmed desorption, formation of NiAl2O4 drastically reduced acidity of alumina, hence lower amounts of coke deposited during acetylene hydrogenation was found for the Ni-modified α-Al2O3 supported catalysts. For any given method, ethylene selectivity was improved in the order of Pd/Ni–Al2O3-0.5 > Pd/Ni–Al2O3-0.3 > Pd/Ni–Al2O3-0  Pd/α–Al2O3-commercial. When comparing the samples prepared by different techniques, the sol–gel-made samples showed better performances than the solvothermal-derived ones.  相似文献   

18.
Al2O3-ZrO2(Y2O3) eutectic materials possess good fracture strengths and creep resistance. Increased Al2O3 content is one means to further improve creep resistance. The objective of this study is to examine fracture strength of Al2O3-rich (hypoeutectic) compositions at varying Y2O3 contents. Fibers 160-220 μm in diameter with 68 m/o Al2O3 and 1.1-7.6 m/o Y2O3 (30.5 to 16 m/o ZrO2) were directionally solidified at 0.11 mm/s using the laser-heated float-zone process. Defect populations increased in size and severity with higher Y2O3 contents. However, fibers maintained 1 GPa fracture strength in the presence of numerous pores and shrinkage cavities, which extend with crack-like morphology along the fiber axis.  相似文献   

19.
The Nd2O3 modified ZrO2 was synthesized using two methods of co-precipitation (Nd-ZrO2) and wet impregnation (Nd/ZrO2). The surface and bulk crystalline phases of Nd2O3 modified ZrO2 were investigated by using UV Raman spectroscopy, visible Raman spectroscopy, and X-ray diffraction (XRD). It is observed that the tetragonal phase in the surface region of Nd-ZrO2 was not effectively stabilized by Nd2O3, as Nd2O3 is mainly present in the bulk of Nd-ZrO2. However, in Nd/ZrO2, it is found that with the impregnation of 0.5 mol% Nd2O3 on ZrO2, the surface tetragonal phase of Nd/ZrO2 can be stabilized even after calcination at 700 °C. The UV Raman results indicate that a disordered structure, or intermediate structure, which is involved in the transition from the tetragonal to the cubic phase, is formed at the surface region of Nd/ZrO2. The formation of the aforementioned intermediate structure inhibits the phase transition from tetragonal to monoclinic in the surface region of Nd/ZrO2. Furthermore, it is observed that the mixed tetragonal and monoclinic phases in the surface region of ZrO2 which has been impregnated with Nd2O3 can also be stabilized after calcination at 700 °C. This work provides a simple method for controlling the surface phase of ZrO2 at high temperatures.  相似文献   

20.
LiNi1/3Co1/3Mn1/3O2 powders have been successfully prepared via a newly developed microwave-hydrothermal method. Monophasic powders with an α-NaFeO2 structure were obtained. The particle sizes of the microwave-derived powders were in submicron order (0.2-0.3 μm) and were much smaller than those of the powders synthesized via coprecipitation reaction (1-3 μm). The microwave-hydrothermal route not only shortened the required reaction time but also improved the electrochemical performance of the product. Electrochemical analysis indicated that the microwave-derived LiNi1/3Co1/3Mn1/3O2 powders exhibited a higher capacity than those derived from coprecipitation method. The capacity fading ratio of the microwave-derived powders was lower than that of the powders obtained via coprecipitation route, according to the results of high C-rate tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号