首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of global asymptotic stability analysis and controller synthesis for a class of discrete linear time-delay systems with state saturation nonlinearities is investigated. With the introduction of a free matrix whose infinity norm is less than or equal to 1, the state of discrete linear time-delay systems with state saturation is bounded by a convex hull, which makes it feasible to apply a suitable Lyapunov functional to obtain a sufficient condition for global asymptotic stability. It is also shown that this condition can be extended to controller synthesis and discrete time-delay systems with partial state saturation. The obtained results are expressed in terms of matrix inequalities that can be solved by the presented iterative linear matrix inequality approach. The effectiveness of these results is demonstrated by some numerical examples.  相似文献   

2.
This paper studies the robust stabilization problem of switched discrete-time linear systems subject to actuator saturation. New switched saturation-dependent Lyapunov functions are exploited to design a robust stabilizing state feedback controller that maximizes an estimation of the domain of attraction. The design problem of controller (coefficient matrices) is then reduced to an optimization problem with linear matrix inequality (LMI) constraints. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

3.
In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed using a saturation-dependent Lyapunov function. This saturation-dependent Lyapunov function captures the real-time information on the severity of actuator saturation and leads to less conservative estimate of the domain of attraction, which is based on the solution of an LMI optimization problem. Numerical examples are presented to show the effectiveness of the proposed method.  相似文献   

4.
刘飞  陈娇蓉 《控制与决策》2008,23(3):349-352
对于一类具有Markov跳变参数的双线性离散随机系统,研究其饱和执行器问题.分别采用一般二次型Lyapunov函数、饱和关联Lyapunov函数进行系统随机稳定性分析,以椭圆不变集构造随机稳定域,提出两种依赖于模态跳变率的饱和状态控制器设计方法,两种方法均以线性矩阵不等式的形式给出.  相似文献   

5.
研究了具有控制饱和状态时滞不确定系统的L2控制问题,提出了状态反馈方法,利用Lyapunov函数可获得时滞相关的线性矩阵不等式.线性矩阵不等式条件可保证闭环系统无干扰时鲁棒内稳定性和在某椭球内预先给定的有干扰时L2性能水平,该不等式通过引入辅助矩阵解除了执行器饱和对系统的影响而更易于实现且减小了保守性.采用线性矩阵不等式技术,将控制器存在的充分条件转化为凸优化问题.在此基础上设计了系统的状态反馈控制器,最后用数值仿真验证了所提出方法的可行性.  相似文献   

6.
Stability analysis for continuous-time systems with actuator saturation   总被引:1,自引:1,他引:0  
The aim of this paper is to study the determination of the stability regions for continuous-time systems subject to actuator saturation. Using an affine saturation-dependent Lyapunov function, a new method is proposed to obtain the estimation of the domain of attraction of the closed-loop system. A family of linear matrix inequalities (LMIs) that provides sufficient conditions for the existence of this type of Lyapunov function are presented. The results obtained in this paper can reduce the conservativeness compared with the existing ones. Numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

7.
In this paper, we study the saturation control problem for linear time-invariant (LTI) systems subject to asymmetric actuator saturation under a switching control framework. The LTI plant with asymmetric saturation is first transformed to an equivalent switched linear model with each subsystem subject to symmetric actuator saturation, based on which a dwell-time switching controller augmented with a controller state reset is then developed by using multiple Lyapunov functions. The controller synthesis conditions are formulated as linear matrix inequalities (LMIs), which can be solved efficiently. Simulation results are also included to illustrate the effectiveness and advantages of the proposed approach.  相似文献   

8.
The paper deals with controller design for stochastic Markovian switching systems with time-varying delay and actuator saturation by implying a new criterion for the domain of attraction firstly. By constructing more appropriate Lyapunov–Krasovskii functional, some new conditions for verifying stochastic stability of the plant are established. Then, the state feedback controller is designed to expand the domain of attraction of the corresponding closed-loop system. The procedure of deriving controller gain matrices is converted into an optimisation problem with constraints of a set of linear matrix inequalities. The mathematical model of RLC series circuit illustrates the validity of the obtained results.  相似文献   

9.
研究了具有控制饱和状态时滞不确定系统的L2控制问题, 提出了状态反馈方法, 利用Lyapunov函数可获得时滞相关的线性矩阵不等式. 线性矩阵不等式条件可保证闭环系统无干扰时鲁棒内稳定性和在某椭球内预先给定的有干扰时L2性能水平, 该不等式通过引入辅助矩阵解除了执行器饱和对系统的影响而更易于实现且减小了保守性. 采用线性矩阵不等式技术, 将控制器存在的充分条件转化为凸优化问题. 在此基础上设计了系统的状态反馈控制器, 最后用数值仿真验证了所提出方法的可行性.  相似文献   

10.
基于迭代线性矩阵不等式的奇异摄动系统同时镇定   总被引:9,自引:2,他引:9  
研究了采用一个线性状态反馈控制器镇定多个线性奇异摄动系统的问题.同时镇定条 件可以表达为一组矩阵不等式条件,所得条件与摄动参数无关,从而有效地回避了病态问题.采 用基于快慢分解的两步法可以得到镇定控制器增益和相应的Lyapunov函数.而在每一步需要利 用迭代线性矩阵不等式技术求解相应的双线性矩阵不等式,相关定理研究了算法的收敛性.本文 所得结论可同时适用于标准与非标准奇异摄动系统.文末给出了相应的仿真算例.  相似文献   

11.
钱明霞  嵇小辅 《控制与决策》2016,31(8):1475-1480

讨论一类具有状态饱和非线性的离散线性系统稳定性分析问题. 通过引入无穷范数小于等于1 的自由矩阵与对角元素非正的对角矩阵, 将状态饱和离散线性系统的状态变量约束在一个凸多面体内, 进而以矩阵不等式形式给出状态饱和离散线性系统的稳定性判据, 并给出该矩阵不等式的迭代线性矩阵不等式算法. 基于这一稳定性判据, 给出了基于迭代线性矩阵不等式的状态反馈控制律设计算法. 通过状态饱和离散线性系统的状态空间分割方法, 给 出了保守性更小的稳定性判据, 并给出了相应的迭代线性矩阵不等式算法. 数值例子验证了所给出方法的正确性与有效性.

  相似文献   

12.
In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions are proposed in the enlarged space containing both the state and its time difference which allow extra degree of freedom and lead to less conservative estimation of the domain of attraction. Furthermore, based on this result, a useful lemma and an iterative LMI-based optimization algorithm are also developed to maximize an estimation of domain of attraction. A numerical example illustrates the effectiveness of the proposed methods.  相似文献   

13.
This paper deals with the issue of reliable control for discrete‐time switched linear systems with faulty actuators by utilizing a multiple Lyapunov functions method and estimate state‐dependent switching technique. A solvability condition for the reliable control problem is given in terms of matrix inequality with an extra matrix variable. This condition allows the reliable control problem for each individual subsystem to be unsolvable. For each subsystem of such a switched system, we design an observer and an observer‐based controller. A switching rule depending on the observer state is designed which, together with the controllers, can guarantee the stability of the closed‐loop switched system for all admissible actuator failures. The observers, controllers, and switching law are explicitly computed by solving linear matrix inequalities (LMIs). The proposed design method is illustrated by two numerical examples.  相似文献   

14.
一类不确定线性时滞系统的输出反馈鲁棒镇定   总被引:4,自引:1,他引:3  
研究一类不确定线性时滞系统的输出反馈鲁棒镇定问题,其中不确定性不必满足匹配条件。以二次Lyapunov泛函保证系统的渐近稳定性,利用线性矩阵不等式给出了系统可以利用动态输出反馈鲁棒镇定的充分条件。当此条件成立时,基于线性矩阵不等式的解构造了全阶动态输出反馈镇定控制器。  相似文献   

15.
This paper investigates gain-scheduled control design for linear systems with time-varying state delays subject to actuator saturation and external disturbance. Assuming the disturbance is peak bounded, a sufficient delay-dependent condition is established to guarantee that a family of level sets, corresponding to a novel parameter-dependent Lyapunov–Krasovskii functional, are nested and invariant to the closed-loop system. The invariant sets are then used to obtain nested reachable sets (ellipsoids) to bound the closed-loop states. A family of continuous controllers are designed based on these nested ellipsoids. The controller with the best performance is selected, each time, based on the closed-loop state vector, while complying with the saturation bound, and the resulting closed-loop system is locally input-to-state stable. All conditions are represented in the form of linear matrix inequalities (LMIs) by the linear spline method. Finally, the benefit of the control method is illustrated by two examples.  相似文献   

16.
17.
研究了一类具有饱和输入的线性系统的无源控制问题。利用Riccati方程的方法,Lyapunov稳定理论和矩阵理论,给出了一类具有饱和输入的线性系统可无源控制的一个新的充分条件、利用Riccati方程的解,提出了该系统的一种无源控制器的设计方法。该方法设计简单,利于工程的实现,仿真实例说明了其有效性。  相似文献   

18.
This paper investigates the problem of delay dependent stability and H performance for a class of linear systems with interval time-varying delay. A new model transformation is first proposed by employing a three-terms approximation of delayed state variables, for a better approximation of delayed state. By using scaled small gain theorem and a simple Lyapunov–Krasovskii functional, new stability and H performance criteria are proposed in terms of linear matrix inequalities, which can be easily solved by using standard numerical packages. Finally, numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, the stabilization problem and controller design of model‐based networked control systems (MB‐NCSs) with both arbitrary and Markovian packet dropouts are discussed via the switched system approach. Different from the common way of using the last successfully transmitted information, the approximate state produced by the explicit plant model is applied to deal with the packet loss problem in our method. Based on the Lyapunov functional methodology and inequality techniques, some sufficient stabilization conditions are derived and stabilizing state feedback controllers are constructed. Moreover, by using the cone complementary linearation (CCL) method, a non‐linear minimization problem subject to some linear matrix inequalities (LMIs) is provided here to help find a sub‐optimal solution. Numerical examples and accompanying simulations illustrate the effectiveness and validity of our techniques, and also evidence of improvements over the existing literature.  相似文献   

20.
This paper revisits the problem of robust H filtering design for a class of discrete-time piecewise linear state-delayed systems. The state delay is assumed to be time-varying and of an interval-like type, which means that both the lower and upper bounds of the time-varying delay are available. The parameter uncertainties are assumed to have a structured linear fractional form. Based on a novel delay-dependent piecewise Lyapunov–Krasovskii functional combined with Finsler's Lemma, a new delay-dependent sufficient condition for robust H performance analysis is first derived and then the filter synthesis is developed. It is shown that by using a new linearisation technique, a unified framework can be developed so that both the full-order and reduced-order filters can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a numerical example is provided to illustrate the effectiveness and less conservatism of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号