共查询到20条相似文献,搜索用时 22 毫秒
1.
Sixteen phases in the microenvironments were defined for the structural development and innervation of the cochleo-vestibular ganglion and its targets. In each phase the cell adhesion molecules, neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule, were expressed differentially by cochleo-vestibular ganglion cells, their precursors, and the target cells on which they synapse. Detected by immunocytochemistry in staged chicken embryos, in the otocyst, neural cell adhesion molecule, but not L1-cell adhesion molecule, was localized to the ganglion and hair cell precursors. Ganglionic precursors, migrating from the otocyst, only weakly expressed neural cell adhesion molecule. Epithelial hair cell precursors, remaining in the otocyst, expressed neural cell adhesion molecule, but not L1-cell adhesion molecule. Post-migratory ganglion cell processes expressed both molecules in all stages. The cell adhesion molecules were most heavily expressed by axons penetrating the otic epithelium and accumulated in large amounts in the basal lamina. In the basilar papilla (cochlea), cell adhesion molecule expression followed the innervation gradient. Neural cell adhesion molecule and L1 were heavily concentrated on axonal endings peripherally and centrally. In the rhombencephalon, primitive epithelial cells expressed neural cell adhesion molecule, but not L1-cell adhesion molecule, except in the floorplate. The neuroblasts and their axons expressed L1-cell adhesion molecule, but not neural cell adhesion molecule, when they began to migrate and form the dorsal commissure. There was a stage-dependent, differential distribution of the cell adhesion molecules in the floorplate. Commissural axons expressed both cell adhesion molecules, but their polysialic acid disappeared within the floorplate at later stages. In conclusion, the cell adhesion molecules are expressed by the same cells at different times and places during their development. They are positioned to play different roles in migration, target penetration, and synapse formation by sensory neurons. A multiphasic model provides a morphological basis for experimental analyses of the molecules critical for the changing roles of the microenvironment in neuronal specification. 相似文献
2.
To explore the role of cell adhesion molecules in the innervation of the inner ear, antibody perturbation was used on histotypic co-cultures of the ganglionic and epithelial anlagen derived from the otocyst. When unperturbed, these tissues survived and differentiated in this culture system with outgrowth of fasciculated neuronal fibers which expressed neural cell adhesion molecule and L1. The fibers exhibited target choice and penetration, then branching and spreading within the otic epithelium as individual axons. Treatment of the co-cultures, or of the ganglionic anlagen alone, with anti-neural cell adhesion molecule or anti-L1 Fab fragments produced a defasciculation of fibers but did not affect neurite outgrowth. In the co-cultures this defasciculation was accompanied by a small increase in the number of fibers found in inappropriate tissues. However, the antibodies did not prevent fiber entry to the otic epithelium. In contrast, removal of polysialic acid from neural cell adhesion molecule with endoneuraminadase-N, while producing a similar fiber defasciculation, also increased the incidence of fibers entering the epithelium. Nevertheless, once within the target tissue, the individual fibers responded to either Fab or to desialylation by spreading out more rapidly, branching, and growing farther into the epithelium. The findings suggest that fasciculation is not essential for specific sensory fibers to seek out and penetrate the appropriate target, although it may improve their tracking efficiency. Polysialic acid on neural cell adhesion molecule appears to limit initial penetration of the target epithelium. Polysialic acid as well as neural cell adhesion molecule and L1 function are involved in fiber-target interactions that influence the arborization of sensory axons within the otic epithelium. 相似文献
3.
The sera from patients with nasopharyngeal carcinoma (n = 30), oral carcinoma (n = 22) and laryngeal carcinoma (n = 22) was extracted before treatment. The concentration of circulating intercellular adhesion molecule 1 (ICAM-1), E-selectin and vascular cell adhesion molecule 1 (VCAM-1) was measured by enzyme-linked immunoassay and compared with those from normal subjects (n = 20). The concentration of circulating ICAM-1, E-selectin and VCAM-1 was significantly increased in nasopharyngeal carcinoma. Correspondingly, VCAM-1 and E-selectin were significantly increased in laryngeal carcinoma, whereas only E-selectin was elevated in oral carcinoma. The concentrations of these adhesion molecules did not significantly differ with respect to the early and late stages of these carcinomas. Elevated levels of soluble adhesion molecules in the sera of cancer patients at three different head and neck regions, although appearing to be implicated in these tumour formations, may be unrelated to tumour progression. 相似文献
4.
L1, a neural cell adhesion molecule, is involved in neurite outgrowth, migration and fasciculation. Although L1 is a membrane glycoprotein expressed on neural cells, the soluble form of L1 is generated in vivo by proteolysis. In the present study, a stable transfectant of Chinese hamster ovary (CHO) cells secreting human L1 without cytoplasmic and membrane spanning domains was generated, and the function of the secreted L1 was examined. Explants from embryonic chick brain stem were cultured on a substrate coated with polyethylenimine (PEI) alone, on substrate-bound L1 or in medium containing soluble L1. The neurites induced by L1, both the substrate-bound form and the soluble form, were 2-3 times longer than those cultured on PEI. The ability of the soluble L1 to induce neurite formation was slightly greater than that of the substrate L1. The present results demonstrated that neurite outgrowth was induced not only by substrate-bound L1 but also by soluble L1. Soluble L1 could be a pharmaceutical candidate for the promotion of nerve regeneration. 相似文献
5.
A Bateman M Jouet J MacFarlane JS Du S Kenwrick C Chothia 《Canadian Metallurgical Quarterly》1996,15(22):6050-6059
The L1 cell adhesion molecule has six domains homologous to members of the immunoglobulin superfamily and five homologous to fibronectin type III domains. We determined the outline structure of the L1 domains by showing that they have, at the key sites that determine conformation, residues similar to those in proteins of known structure. The outline structure describes the relative positions of residues, the major secondary structures and residue solvent accessibility. We use the outline structure to investigate the likely effects of 22 mutations that cause neurological diseases. The mutations are not randomly distributed but cluster in a few regions of the structure. They can be divided into those that act mainly by changing conformation or denaturing their domain and those that alter its surface properties. 相似文献
6.
WG Degen LC van Kempen EG Gijzen JJ van Groningen Y van Kooyk HP Bloemers GW Swart 《Canadian Metallurgical Quarterly》1998,152(3):805-813
From a differential mRNA display comparing a non- and a highly metastasizing human melanoma cell line, we isolated and characterized memD. memD is preferentially expressed in the highly metastasizing melanoma cell lines of a larger panel. The encoded protein, MEMD, is identical to activated leukocyte cell adhesion molecule (ALCAM), a recently identified ligand of CD6. ALCAM is involved in homophylic (ALCAM-ALCAM) and heterophylic (ALCAM-CD6) cell adhesion interactions. We have studied MEMD/ALCAM cell-cell interactions between human melanoma cells. The expression of this cell adhesion molecule not only correlates with enhanced metastatic properties and with aggregational behavior of human melanoma cells as tested by FACS analysis, but transfection experiments also make clear that MEMD/ALCAM expression is essential for cell-cell interaction of the investigated human melanoma cells. As the melanoma cell lines analyzed are all CD6 negative, these results strongly suggest that MEMD/ALCAM is an adhesion molecule mediating homophylic clustering of melanoma cells. MEMD/ALCAM expression is not restricted to subsets of leukocytes and melanoma cells, it can also be found in healthy organs and in several other malignant tumor cell lines. Besides, MEMD/ALCAM is also expressed in cultured endothelial cells, pericytes and melanocytes, in xenografts derived from the radial and vertical growth phase and in 4 of 13 melanoma metastasis lesions. The potential role is discussed of MEMD/ALCAM mediated cell-cell interactions in migration of mobile cells (ie, activated leukocytes, metastasizing tumor cells) through tissues. 相似文献
7.
We immunopurified a surface antigen specific for the collecting duct (CD) epithelium. Microsequencing of three polypeptides identified the antigen as the neuronal cell adhesion molecule L1, a member of the immunoglobulin superfamily. The kidney isoform showed a deletion of exon 3. L1 was expressed in the mesonephric duct and the metanephros throughout CD development. In the adult CD examined by electron microscopy, L1 was not expressed on intercalated cells but was restricted to CD principal cells and to the papilla tall cells. By contrast, L1 appeared late in the distal portion of the elongating nephron in the mesenchymally derived epithelium and decreased during postnatal development. Immunoblot analysis showed that expression, proteolytic cleavage, and the glycosylation pattern of L1 protein were regulated during renal development. L1 was not detected in epithelia of other organs developing by branching morphogenesis. Addition of anti-L1 antibody to kidney or lung organotypic cultures induced dysmorphogenesis of the ureteric bud epithelium but not of the lung. These results suggest a functional role for L1 in CD development in vitro. We further postulate that L1 may be involved in the guidance of developing distal tubule and in generation and maintenance of specialized cell phenotypes in CD. 相似文献
8.
A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans 总被引:1,自引:0,他引:1
The neural cell adhesion molecule (NCAM) is known to participate in both homophilic and heterophilic binding, the latter including mechanisms that involve interaction with proteoglycans. The polysialic acid (PSA) moiety of NCAM can serve as a negative regulator of homophilic binding, but indirect evidence has suggested that PSA can also be involved in heterophilic binding. We have examined this potential positive role for PSA in terms of the adhesion of PSA-expressing mouse F11 cells and chick embryonic brain cells to substrates composed of the purified heparan sulfate proteoglycans agrin and 6C4. This adhesion was specifically inhibited by polyclonal anti-NCAM Fab antibodies, monoclonal anti-PSA antibodies, PSA itself, and enzymatic removal of either PSA or heparan sulfate side chains. By contrast, the adhesion was not affected by chondroitinase, and cell binding to laminin was not inhibited by any of these treatments. A specific NCAM-heparan sulfate interaction in this adhesion was further indicated by its inhibition with monoclonal anti-NCAM Fab antibodies that recognize the known heparin-binding domain of NCAM and with the HBD-2 peptide derived from this region, but not with antibodies directed against other regions of the protein including the homophilic binding region. Together, the results suggest that PSA can act in vitro either as a receptor in NCAM heterophilic adhesion or as a promoter of binding between heparan sulfate proteoglycans and the NCAM heparin-binding domain. 相似文献
9.
The expression of the neural cell adhesion molecule L1 is altered by neuronal activity and promotes neurite outgrowth in vitro. To study the effects of L1 on learning and synaptic plasticity, transgenic mice have been created which express L1 ectopically in glial fibrillary acidic protein (GFAP) expressing astrocytes. Ninety mice, including GFAP-L1-transgenic mice from two genetic backgrounds and their littermates, were tested for swimming navigation learning in the Morris water maze according to a standardized protocol. While learning the position of an invisible target platform and also relearning its position after relocation, GFAP-L1-transgenic mice spent a greater fraction of their swim time in the target quadrant. Moreover, they showed a more rapid improvement of escape performance during the first day of training. Factor analysis revealed that this difference in swimming pattern could not be explained by non-cognitive factors. Factor analysis also revealed that, during a probe trial, the GFAP-L1-transgenic mice spent comparatively less time in the old target quadrant than predicted by the increased searching they had shown during acquisition learning. Hence, ectopic expression of L1 by astrocytes in mice appears to be linked to a factor which increases behavioural flexibility and selectivity while learning and relearning, but concomitantly may lead to a relative reduction of spatial retention. 相似文献
10.
This review focuses on the mechanisms of control of heart glycolysis under conditions of normal and reduced oxygen supply. The kinetic properties and the biochemical characteristics of control steps (glucose transporters, hexokinase, glycogen phosphorylase and phosphofructokinases) in the heart are reviewed in the light of recent findings and are considered together to explain the control of glycolysis by substrate supply and availability, energy demand, oxygen deprivation and hormones. The role of fructose 2,6-bisphosphate in the control of glycolysis is analysed in detail. This regulator participates in the stimulation of heart glycolysis in response to glucose, workload, insulin and adrenaline, and it decreases the glycolytic flux when alternative fuels are oxidized. Fructose 2,6-bisphosphate integrates information from various metabolic and signalling pathways and acts as a glycolytic signal. Moreover, a hierarchy in the control of glycolysis occurs and is evidenced in the presence of adrenaline or cyclic AMP, which relieve the inhibition of glycolysis by alternative fuels and stimulate fatty acid oxidation. Insulin and glucose also stimulate glycolysis, but inhibit fatty acid oxidation. The mechanisms of control underlying this fuel selection are discussed. Finally, the study of the metabolic adaptation of glucose metabolism to oxygen deprivation revealed the implication of nitric oxide and cyclic GMP in the control of heart glucose metabolism. 相似文献
11.
S Kunz M Spirig C Ginsburg A Buchstaller P Berger R Lanz C Rader L Vogt B Kunz P Sonderegger 《Canadian Metallurgical Quarterly》1998,143(6):1673-1690
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. 相似文献
12.
Soluble cell adhesion molecules such as sICAM-1 in serum and other biological fluids are suggested as being useful diagnostic parameters for a variety of diseases. Since increased concentrations during diseases are frequently less pronounced compared to other parameters, we tested whether it would be necessary to align the time of blood collection during the course of a clinical trial. In the 9 volunteers of our trial we found a statistically significant effect at the point in time of blood collection and corresponding serum concentrations of sICAM-1 (p < 0.01). The deviation of the concentrations at a certain time from the daily mean in each individual was seen to be as high as 15%. Our data suggest that daytime variations of serum sICAM-1 concentrations should be taken into consideration when longitudinal observations are planned. 相似文献
13.
K Takamatsu B Auerbach R Gerardy-Schahn M Eckhardt G Jaques N Madry 《Canadian Metallurgical Quarterly》1994,54(10):2598-2603
In human serum, at least two molecular species of the neural cell adhesion molecule (NCAM) with molecular weights of 110,000-130,000 and 150,000-180,000, respectively, can be identified by Western blotting. Both are characterized by the absence of epitopes for monoclonal antibodies KD11 and MG5, which specifically recognize intracellular domains of the human NCAM transmembrane isoforms, NCAM-140 and NCAM-180. In contrast to the M(r) 110,000-130,000 molecule also detectable in serum samples from healthy blood donors, the M(r) 150,000-180,000 molecule appears to be tumor associated. The only difference between these two species is shown to be the presence of long chains of alpha-(2,8)-linked N-acetylneuraminic acids, which are characteristic for the so-called embryonic NCAM form. After treatment with endoneuraminidase N, the M(r) 150,000-180,000 molecule can no longer be discriminated from the M(r) 110,000-130,000 molecule in Western blotting as well as gel and anion exchange chromatography experiments. The experimental data clearly show that only the embryonic NCAM molecule carrying the poly-alpha-(2,8)-linked N-acetylneuraminic acid moiety can be regarded as a specific serum marker for small cell lung cancer. 相似文献
14.
15.
16.
PH Jensen NK Thomsen V Soroka V Berezin E Bock FM Poulsen 《Canadian Metallurgical Quarterly》1998,12(4):569-570
This article presents a simple, inexpensive method for precisely locating the floor of the maxillary sinus, as well as the presence of any septa, at the time of sinus augmentation surgery. Using an anesthesia light wand placed transnasally to illuminate the sinus, the surgeon can reliably elevate the lateral maxillary wall overlying the sinus with relative ease without fear of placing the osteotomy cuts too far from the sinus floor. The same procedure can be used postoperatively to evaluate the density of the bone graft placed into the sinus prior to closure. 相似文献
17.
18.
M Balzar HA Bakker IH Briaire-de-Bruijn GJ Fleuren SO Warnaar SV Litvinov 《Canadian Metallurgical Quarterly》1998,18(8):4833-4843
Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha-actinin. 相似文献
19.
JD Malhotra P Tsiotra D Karagogeos M Hortsch 《Canadian Metallurgical Quarterly》1998,273(50):33354-33359
Neural cell adhesion molecules (CAMs) of the immunoglobulin (Ig) superfamily mediate not only cell aggregation but also growth cone guidance and neurite outgrowth. In this study we demonstrate that two neural CAMs, L1-CAM and TAG-1, induce the homophilic aggregation of Drosophila S2 cells but are unable to interact with each other when expressed on different cells (trans-interaction). However, immunoprecipitations from cells co-expressing L1-CAM and TAG-1 showed a strong cis-interaction between the two molecules in the plane of the plasma membrane. TAG-1 is linked to the membrane by a glycosylphosphatidylinositol (GPI) anchor and therefore is unable to directly interact with cytoplasmic proteins. In contrast, L1-CAM-mediated homophilic cell adhesion induces the selective recruitment of the membrane skeleton protein ankyrin to areas of cell contact. Immunolabeling experiments in which S2 cells expressing TAG-1 were mixed with cells co-expressing L1-CAM and TAG-1 demonstrated that the homophilic interaction between TAG-1 molecules results in the cis-activation of L1-CAM to bind ankyrin. This TAG-1-dependent recruitment of the membrane skeleton provides an example of how GPI-anchored CAMs are able to transduce signals to the cytoplasm. Furthermore, such interactions might ultimately result in the recruitment and the activation of other signaling molecules at sites of cell contacts. 相似文献
20.
TE Spencer FF Bartol FW Bazer GA Johnson MM Joyce 《Canadian Metallurgical Quarterly》1999,60(2):241-250
We cloned the dbl-1 gene, a C. elegans homolog of Drosophila decapentaplegic and vertebrate BMP genes. Loss-of-function mutations in dbl-1 cause markedly reduced body size and defective male copulatory structures. Conversely, dbl-1 overexpression causes markedly increased body size and partly complementary male tail phenotypes, indicating that DBL-1 acts as a dose-dependent regulator of these processes. Evidence from genetic interactions indicates that these effects are mediated by a Smad signaling pathway, for which DBL-1 is a previously unidentified ligand. Our study of the dbl-1 expression pattern suggests a role for neuronal cells in global size regulation as well as male tail patterning. 相似文献