首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
线性流形上对称正交对称矩阵逆特征值问题   总被引:2,自引:0,他引:2  
周富照  胡锡炎  张磊 《计算数学》2003,25(3):281-292
1.引言 令R~(n×m)表示所有n×m阶实矩阵集合;OR~(n×n)表示所有n阶正交矩阵全体;A~+表示A的Moore-penrose广义逆;I_к表示К阶单位阵;SR~(n×n)表示n阶实对称矩阵的全体;rank(A)表示A的秩;||·||是矩阵的Frobenius范数;对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij),b_(ij))。  相似文献   

2.
连对角占优矩阵的一些性质   总被引:29,自引:3,他引:29  
沈光星 《计算数学》1990,12(2):132-135
设A=(a_(ij))_(n×n)∈C~(n,n),.记Λ_i=sum from (i≠1 j≠i) to n(|a_(ij)|,)i=?,称|a_(ii)|≥Λ_i的行为占优行,|a_(ii)|>Λ_i的行为严格占优行,|a_(ii)|<Λ_i的行为非占优行. 若A为对角占优阵,记为A∈D_0;若A为严格对角占优阵,记为A∈E;若A为不可约对角占优阵,记为A∈F;若A为广义对角占优阵,记为A∈GD_0;若A为广义严格对角占优阵,记为A∈GE.  相似文献   

3.
1.模糊矩阵及半序关系若矩阵 A=[a_(ij)]_(n×m),其中0≤a_(ij)≤1,则称 A 是一个 n×m 阶模糊矩阵,这种模糊矩阵的全体记为 M_(n×m).任意 A=[a_(ij)]_(n×m),B=[b_(ij)]_(n×m) 是两个 n×m 阶模糊矩阵,若 b_(ij)≤a_(ij),1≤i≤n,1≤j≤m,记为 B≤A(或等价记为 A≥B);关系“≤”(或“≥”)构成了 M_(n×m)中的一个半序关系.在 M_(n×m)中定义:  相似文献   

4.
线性流形上实对称矩阵最佳逼近   总被引:27,自引:4,他引:23  
戴华 《计算数学》1993,15(4):478-488
1.引言 首先介绍一些记号,IR~(n×m)表示所有n×m实矩阵的全体,SIR~(n×n)表示所有n×n实对称矩阵的全体,OIR~(n×n)表示所有n×n正交矩阵的全体,I_n表示n阶单位矩阵,A~T和A~+分别表示矩阵A的转置和Moore-Penrose广义逆。对A=(a_(ij)),B=(b_(ij))∈IR~(n×m),A*B表示A与B的Hadamard积,定义为A*B=(a_(ij)b_(ij)),并且定义A与B的内积  相似文献   

5.
设A=(a_(ij))_(n×n)为n阶复矩阵,记 σ_i=sum from j=1,j≠i to n(|a_(ij)|,i=l,2,…,n)。若|a_(ij)|>σ_i(i=1,2,…n),则称A为(按行)严格对角占优阵,记为A∈D,若|a_(ii)|·|a_(jj)|>σ_iσ_j(i≠j,i,j=1,2,…,n)则称A为严格对角乘积占优阵,记为A∈D_p(在〔1〕中此类矩阵称为广义对角占优阵,并记为GD)。若存在非奇对角阵Q=diag(q_l,…,q_n)使Q~(-1)AQ∈D,则称A为准严格对角占优阵,记为A∈D′(见〔2〕)。若存在非奇对角阵Q=diag(q_1,…,q_n)使Q~(-1)AQ∈D_p,则称A为准严格对角乘积占优阵。记为A∈D′_p。  相似文献   

6.
非奇异H矩阵的充分条件   总被引:23,自引:1,他引:22  
1 引言 设A=(a_(ij))∈C~(n,n),R_i(A)=sum from j≠i to(|a_(ij)|,i,j∈N={1,2,…,n}。若|a_(ij)|≥R_i(A),i∈N,则称A为对角占优矩阵,记为A∈D_0;若不等式中每个不等号都是严格的,则称A为严格对角占优矩阵,记为A∈D。若存在正对角矩阵X,使得AX∈D,则称A为广义严格对角占优矩阵,记为A∈D。  相似文献   

7.
正1引言设A=(a_(ij))∈C~(n×n),N={1,2,…,n}.记R_i(A)= sum |a_(ij)| from j≠i (i∈N),又记N_1=N_1(A)={i∈N:0|a_(ii)|≤R_i(A)},N_2=N_2(A)={i∈N:|a_(ii)R_i(A)}.定义1设A=(a_(ij))∈C~(n×n),如果|a_(ii)|R_i(A)(i∈N),则称A为严格对角占优矩阵.严格对角占优矩阵的集合记为D.如果存在n阶正对角矩阵D使得AD∈D,则称A为广义严格对角占优矩阵.广义严格对角占优矩阵的集合记为D.  相似文献   

8.
对称次反对称矩阵的一类反问题   总被引:10,自引:1,他引:9  
1 引言 用R~(m×n),SR~(n×n),ASR~(n×n),OR~(n×n)分别表示所有m×n实矩阵,n阶实对称矩阵,n阶实反对称矩阵和n阶实正交矩阵组成的集合,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵,||A||表示矩阵A的Frobenius范数。若A=(a_(ij))∈R~(n×n),记D_A=diag(a_(11),a_(22),…,a_(nn)),L_A=(l_(ij))∈R_(n×n)其中当i>j时,l_(ij)=a_(ij),当i≤j时,l_(ij)=0,(i,j=1,2,…,n).若A=(a_(ij)),B=(b_(ij))∈R~(m×n),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij)b_(ij))。  相似文献   

9.
M矩阵的一些性质   总被引:2,自引:0,他引:2  
设A=(a_(ij))n×n为n阶实矩阵,若a_(ij)≥0(a_(ij)>0),i,j=1,2,…,n。则称A为非负(正)矩阵。类似地,一个向量,若其分量皆为正(非负),则叫做正(非负)向量。若a_(ii)>0,a_(ij)≤0,i≠j,i,j=1,2,…,n,则A叫做L矩阵,记为A∈L。我们知道,若A∈L,则下述诸条件是等价的:  相似文献   

10.
非奇异H-矩阵的新判据   总被引:1,自引:0,他引:1  
1引言与记号设A=(a_(ij))∈C~(n×n),记N={1,2,…,n},∧_i(?)∧_i(A)=sum from j≠i|a_(ij)|,S_i(?)S_i(A)=sum from j≠i|a_(ij)|,(?)i,j∈N。若|a_(ij)>∧_i(A),(?)i∈N,则称A为严格对角占优矩阵。  相似文献   

11.
广义严格对角占优矩阵在计算数学、数学物理、控制论等众多领域有着广泛而重要的应用.但实际判断一个矩阵是否为广义严格对角占优矩阵却是困难的.本文利用α-对角占优矩阵的性质,给出了广义严格对角占优矩阵的几个判定条件,扩大了判别范围.  相似文献   

12.
The inverse eigenvalue problem is about how to construct a desired matrix whose spectrum is the given number set. In this paper, in view of the Givens matrices, we prove that there exist three classes of full H-matrices which include strictly diagonally dominant full matrix, $\alpha$-strictly diagonally dominant full matrix and $\alpha$-double strictly diagonally dominant full matrix, and their spectrum are all the given number set. In addition, we design some numerical algorithms to explain how to construct the above-mentioned full H-matrices.  相似文献   

13.
广义严格对角占优矩阵的充分条件   总被引:1,自引:0,他引:1  
1 引言 广义严格对角占优矩阵是一类在数值代数、数学物理和控制论等领域有着广泛应用的特殊矩阵,例如:线性方程组Ax=b,当系数矩阵A为广义严格对角占优矩阵时,许多经典的迭代算法均是收敛的,同时对目前提出的一些修正算法也是收敛的.  相似文献   

14.
广义对角占优矩阵的充分条件   总被引:59,自引:2,他引:57  
广义对角占优势矩阵及M-矩阵是计算数学和矩阵理论研究的重要课题之一。本文利用α-对角占优矩阵给出了判定广义对角占优及非异M-矩阵的若干充分条件,改进了文[1]及文[2]的相应的结果,作为应用,利用矩阵分块又给矩阵非奇异若干判定条件。  相似文献   

15.
In this paper, we prove that the diagonal-Schur complement of a strictly doubly diagonally dominant matrix is strictly doubly diagonally dominant matrix. The same holds for the diagonal-Schur complement of a strictly generalized doubly diagonally dominant matrix and a nonsingular H-matrix. We point out that under certain assumptions, the diagonal-Schur complement of a strictly doubly (doubly product) γ-diagonally dominant matrix is also strictly doubly (doubly product) γ-diagonally dominant. Further, we provide the distribution of the real parts of eigenvalues of a diagonal-Schur complement of H-matrix. We also show that the Schur complement of a γ-diagonally dominant matrix is not always γ-diagonally dominant by a numerical example, and then obtain a sufficient condition to ensure that the Schur complement of a γ-diagonally dominant matrix is γ-diagonally dominant.  相似文献   

16.
It is known that the diagonal-Schur complements of strictly diagonally dominant matrices are strictly diagonally dominant matrices [J.Z. Liu, Y.Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004) 365-380], and the same is true for nonsingular H-matrices [J.Z. Liu, J.C. Li, Z.T. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Algebra Appl. 428 (2008) 1009-1030]. In this paper, we research the properties on diagonal-Schur complements of block diagonally dominant matrices and prove that the diagonal-Schur complements of block strictly diagonally dominant matrices are block strictly diagonally dominant matrices, and the same holds for generalized block strictly diagonally dominant matrices.  相似文献   

17.
严格对角占优三对角矩阵逆元素的估计   总被引:1,自引:0,他引:1  
本文给出了严格对角占优三对角矩阵逆元素的估计式,获得了比文[1]定理更好的结果。即:去掉了文[1]中非负这一限制条件,且使文[1]的定理成为本文定理之特例。  相似文献   

18.
从矩阵的基础知识出发,给出了当目标函数矩阵是严格对角占优阵时,快速地获得0-1二次规划最优解的一个新算法;该方法具有很强的实用性,是此类问题的一个高效求解算法.  相似文献   

19.
以M-矩阵以及α-对角占优矩阵为工具,对0≤α≤1,借助Hlder不等式给出了广义严格对角占优矩阵以及非奇异M-矩阵的几则新的充分条件,拓广了近期的一些相关结果,并用数值例子说明这些结果的有效性.  相似文献   

20.
<正>1引言在网络,自动化理论,差分方程求解及逻辑电路等实际问题中,往往需要求解分块带状方程组HX=F(1)这里H=(H_(ij)_(n×n),其中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号