首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heim  Alexander  Luster  Jörg  Brunner  Ivano  Frey  Beat  Frossard  Emmanuel 《Plant and Soil》1999,216(1-2):103-116
In order to investigate if Al resistance in Norway spruce (Picea abies[L.] Karst.) can be attributed to similar exclusion mechanisms as they occur in several crop plants, three-year-old Norway spruce plants were treated for one week in hydroculture with either 500 μM AlCl3 or CaCl2 solutions at pH 4. Sequential root extraction with 1 M NH4Cl and 0.01 M HCl and EDX microanalysis revealed that Al and Ca in cell walls and on the surface participated in exchange processes. About half of the Al extracted by the sequential extraction was not exchangeable by 1 M NH4Cl. Phenolics and phosphate present in the root extracts are possible ligands for Al adsorbed to or precipitated at the root in a non-exchangeable form. In both treatments, C release during the first period of 2 d was much higher than during the remaining time of the experiment. Al treated plants released less total C, carbohydrates and phenolics than did Ca treated plants. Acetate was the only organic acid anion that could be detected in some samples of both treatments. Free amino acids were present at micromolar concentrations but as hydrolysis did not increase their yield, there was no evidence of peptide release. One to two thirds of the released C were large enough not to pass a 1 kDa ultrafilter. The results suggest that exudation of soluble organic complexors is not a major Al tolerance mechanism in Norway spruce, although complexation of Al by phenolic substances released by the root could be detected by fluorescence spectroscopy. Aluminium tolerance could rather be attributed to immobilization in the root apoplast, where strong binding sites are available or precipitation may occur. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Wissemeier  A.H.  Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):53-57
Under controlled environmental conditions in nutrient solution experiments induction of non-constitutive callose in roots has been shown to be a symptom of aluminium (Al) toxicity. In the present study roots of Norway spruce were sampled from a forest site where soil conditions had been modified by acidic irrigation and liming (Höglwald Experiment in Bavaria, Germany). A significant positive relationship was found between the callose content in short roots and the Al concentration in the soil solution, particularly if free Al, rather than total concentrations of soluble Al, were used for prediction. At the same sites root growth of Norway spruce was not affected by free Al concentrations in the range of 2.5 to 199 µM Al. The results show that also under field conditions a positive relationship between Al supply and callose content can be established. In Norway spruce callose content in roots is a much more sensitive parameter for Al supply than root growth.  相似文献   

3.
Spálený  J. 《Plant and Soil》1977,48(3):557-563
Summary Young Norway spruce seedlings irrigated with 5 per cent K2SO4 for 7 days exhale gaseous H2S into the atmosphere. The share of the weight of H2S per 1 kg of dry substance of needles for 1 h was 2.22 g during the 8th day. Where the K2SO4 solution was irrigated for 28 days, there began to appear on the needles a brown necrosis similar to those forming due to the effect of atmospheric sulphur dioxide. During the experiment, the exchange acidity of the soil pH/KCl did not change. The discussion discusses the mechanism of inhibition of metabolic processes in higher plants due to excessive amounts of SO4-ion having been absorbed from the soil.  相似文献   

4.
Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):23-27
The longterm effect of acid irrigation and liming (dolomitic limestone) on the mineral element content of roots of Norway spruce (Picea abies [L.] Karst.) was investigated in an 80-year-old Norway spruce stand in South Germany (Bavaria). Soil cores of four soil depths (humic layer, 0–10, 10–20 and 20–30 cm) were taken over 2 years (August 1991 and August 1992) from six plots with different treatments (control, normal irrigation, acid irrigation solely or in combination with liming) and living short roots selected and analysed for calcium (Ca), magnesium (Mg), manganese (Mn) and aluminium (Al).On the acid irrigated plot, the Ca and Mg contents of roots were decreased in 1991, but by 1992, 2 years after the irrigation had been terminated, no difference could be found. The Al content of the roots was not increased by acid irrigation but rose with increasing soil depth, regardless of treatment. Liming increased root contents of Ca and Mg and reduced contents of Mn and Al. This effect was especially distinct in the humic layer and decreased with increasing soil depth. Even though the molar Ca/Al-ratio in the roots in the mineral soil was generally low (0.09–0.52), no evidence of Al toxicity could be found. The formation of Al complexes is discussed as a reason for this behaviour.  相似文献   

5.
Effects of soil pH and calcium on mycorrhizas of Picea abies   总被引:3,自引:0,他引:3  
The effects of lime, increased soil pH and increased soil Ca concentration on the mycorrhizas of Norway spruce. [Picea abies (L.) Karst.] were studied independently of each other to elucidate the different mechanisms through which lime may influence mycorrhizas in acidic soil. In a field experiment (mature Norway spruce in podzol), lime was applied as CaCO3; increased Ca concentration without an increase in pH was achieved with CaSO4; and soil pH was increased without calcium by means of Na2CO3 and K2CO3 (Na+K treatment). Treatments were done in October, and mycorrhizas were counted from samples collected in the following June and September. All treatments increased the percentage of dead short root tips compared to controls in September, and Na+K already in June. Cenococcum geophilum Fr. increased in proportion in plots treated with Na+K.In a sand culture experiment, Norway spruce seedlings were grown from seed and inoculated with Cenococcum geophilum, or root inoculum, or left uninoculated. When mycorrhizas were beginning to form, CaCO3 and CaSO4 treatments were applied. Six weeks later, the percent of dead short root tips in both salt treatments was significantly increased from control, but formation of mycorrhizas was not inhibited by treatments.As all the treatments increased the proportion of dead short root tips, it is concluded that lime directly and adversely affected mycorrhizas of Norway spruce in sand culture and in mor humus. Both increased ionic strength and increased pH may be reasons for this rather than Ca2+ specifically.  相似文献   

6.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

7.
Factors associated with soil acidity are considered to be limiting for plants in many parts of the world. This work was undertaken to investigate the role of the toxicity of hydrogen (H(+)) which seems to have been underconsidered by ecologists as an explanation of the reduced plant growth observed in very acid soils. Racial differences are reported in plant growth response to increasing acidity in the grass Holcus lanatus L. (Yorkshire-fog) and the tree Betula pendula Roth (Silver Birch). Soils and seeds were collected from four Scottish sites which covered a range of soils from acid (organic and mineral) to more base-rich. The sites and their pH (1:2.5 fresh soil:0.01 M CaCl(2)) were: Flanders Moss (FM), pH 3.2+/-0.03; Kippenrait Glen (KP), pH 4.8+/- 0.05; Kinloch Rannoch (KR), pH 6.1+/-0.16; and Sheriffmuir (SMM), pH 4.3+/-0.11. The growth rates of two races of H. lanatus, FM and KP, and three races of B. pendula (SMM, KP and KR) were measured in nutrient solution cultures at pH 2.0 (H. lanatus only), 3.0, 4.0, 5.0, and 5.6. Results showed races from acid organic soils (FM) were H(+)-tolerant while those from acid mineral soils (SMM) were Al(3+)-tolerant but not necessarily H(+)-tolerant. These results confirmed that populations were separately adapted to H(+) or Al(3+) toxicity and this was dependent upon the soil characteristics at their site of collection. The fact of plant adaptation to H(+) toxicity supports the view that this is an important factor in very acid soils.  相似文献   

8.
Effect of acid irrigation and liming on root growth of Norway spruce   总被引:3,自引:0,他引:3  
Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):11-22
The effect of acid irrigation and liming on fine root growth of Norway spruce (Picea abies [L.] Karst.) was studied in an approximately 80-year-old forest stand in southern Germany (Höglwald). Root growth was measured mainly on root windows and in addition by soil core sampling. Root growth rate showed a typical pattern in the course of a year with a maximum in August. Acid irrigation depressed root growth rate, whereas liming, particularly in combination with acid irrigation, markedly increased root growth in the humic layer and the upper 0–5 cm of the mineral soil. The treatment effects on root growth in the mineral soil below 5 cm were small and not significant. Root growth rate was not correlated with the concentration of aluminium (Al) or the molar ratio of calcium (Ca) to Al in the soil solution. The results suggest that inhibition of root growth by acid irrigation is a direct effect of high proton concentrations in the irrigation water, and that enhancement of root growth by liming is caused by an improved supply of mineral nutrients and higher biological activity.  相似文献   

9.
Acid-soil stress in 12 sorghum (Sorghum bicolor (L.) Moench) genotypes was attributed mainly to aluminium (Al) toxicity. Root damage and magnesium (Mg) deficiency are two independent aspects of plant sensitivity to Al, either in acid soil or in nutrient solution. At moderate soil acidity, Mg deficiency dominantly limited growth whilst at high acidity root damage overruled the effect of Mg deficiency on the growth response. In nutrient solutions containing Al, increased Mg supply improved both root development and Mg nutrition of plants, whereas increased calcium (Ca) supply, or nutrition with ammonium (NH4) instead of nitrate (NO3), alleviated root damage but amplified Mg deficiency. At lowered pH the syndrome of Al toxicity was more profound. The implications of Mg-Al interactions, root damage, Mg supply and genotype selection are elucidated.  相似文献   

10.
Effects of soil acidity on groundnut-Bradyrhizobium symbiotic performance were studied in a potted, sandy soil in a glasshouse in Zimbabwe. The soil was limed to soil-pH levels of 5.0 and 6.5. Soil acidity negatively affected plant development, measured as leaf area and plant dry weight, while nodulation was enhanced. This acidity-enhanced nodulation was most evident when nodulation was caused by the indigenousBradyrhizobium population. Effects of soil acidity differed between groundnut cultivars andBradyrhizobium spp. strains, the former having greater importance. TwoArachis hypogaea L. Spanish-type cultivars, Falcon and Plover, performed equally well at neutral soil pH, but Falcon was more acid tolerant. Comparison of the symbiotic performance in neutral versus acid soil of twoBradyrhizobium spp. strains, MAR 411 (3G4b20) and MAR 1510 (CB 756), showed that MAR 411 performed superiorly in neutral soil, but MAR 1510 in acid soil. The indigenousBradyrhizobium population was more effective than was inoculation with strains MAR 411 or MAR 1510. Comparison of twelveBradyrhizobium spp. strains for their symbiotic performance in acid soil showed that some strains were totally ineffective under acidity stress (MAR 253, MAR 967 and MAR 1506), while others performed well.Bradyrhizobium spp. strain MAR 1576 (32 H1) ranked highest for nitrogen accumulation, plant dry weight and leaf area, with strains MAR 1555 (TAL 11) and MAR 1510 following closely. Nitrate fertilisation of groundnut plants led to soil alkalinisation, while nitrogen fixation resulted in soil acidification. Soil acidity in combination with soil sterilisation gave rise to symptoms associated with Al and Mn toxicity.  相似文献   

11.
Two-year-old red spruce seedlings ( Picea rubens Sarg .) growing in. field chambers were repeatedly exposed to acidic mist with a factorial combination of 3 fluctuating levels of acidity: median pH values of 3.0 (range of 2.5 to 3.5), 3.5 (range of 3.0 to 4.0), and 4.0 (range of 3.5 to 4.5). and 3 ion compositions: sulfate. nitrate and ammonium, and a combination of all 3 ions. The experiment was performed during the growing season over a period of 3.5 months. Mist exposures were intermittent with 5 wet-dry cycles for each 16-h overnight exposure period, Foliar necrosis occurred on seedlings treated with the most acidic mist and was most severe when the mist contained sulfate. At a median pH of 3.5, a value close to that of cloud water occurring in the eastern United States, injury developed with sulfuric acid mist, but not. when the mist contained nitric acid. The combination of high acidity and sulfate significantly decreased volume of aboveground tissues, while high acidity and nitrate increased volume. Root and needle dry weights were not affected. However, high acidity of mist was associated with increased leader shoot length. These results indicate, that there is a risk of foliar injury and changes in growth of red spruce with cloud water at a median acidity of pH 3.5 or below, especially when there are high concentrations of sulfate and low concentrations of nitrate.  相似文献   

12.
Norway spruce (Picea abies) was exposed to nutrient solutions containing a range of aluminium (Al) concentrations at several pH levels (3.2, 4 and 5). Root growth was reduced by 100 µM and 400 µM Al at pH 4 and 5, but at pH 3.2 only by 400 µM Al. The Al content of the roots increased with increasing pH. The Al content of the roots was higher at the root tips than at the older root parts at all pH values. Using X-ray microanalysis it could be shown that higher levels of Al at increased pH were mainly due to increased Al contents in root cortex cell walls. In seedlings, mycorrhizal with Pisolithus tinctorius or Lactarius rufus, the Al concentration of cortex cell walls was higher when nitrate (NO3) rather than ammonium (NH4) was the nitrogen (N) source.  相似文献   

13.
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over‐irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over‐irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over‐irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over‐irrigated substrate. Over‐irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60–70%) compared with well‐drained plants. Over‐irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over‐irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene‐insensitive genotype Never ripe (Nr) was much less sensitive to over‐irrigation than the wild type. Over‐irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3)2 to over‐irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over‐irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over‐irrigated plants, in part by stimulating foliar ethylene emission.  相似文献   

14.
Total Al concentration or pH in 1∶5 10 mM CaCl2 extracts and exchangeable Al in 100 mM BaCl2 extracts cannot always distinguish between Al-toxic and Al-nontoxic topsoils. Our objectives were to compare the abilities of different measures of Al and pH in various extracts to predict the effects of acidity on growth and nodulation of subterranean clover. In a glasshouse experiment,Trifolium subterraneum L. cv. Mt Barker was grown in acidic soils from 3 sites in the Western Australian wheatbelt with different histories of phosphate fertilizer application. The pH was adjusted to give a range of 3.8–7 in the centrifuged soil solution (SS). Total (Al-tot), reactive Al (8-hydroxyquinoline-extractable, Al-HQ) and pH were measured in SS and 1∶5 extracts of KCl, CaCl2 and LaCl3. Another method of estimating reactive Al (Al which reacts with Chelex-100) was also measured in SS only. Other measurements included exchangeable Al and H, Ca in SS, and P in SS and the CaCl2 extracts. Both plant growth and early nodulation decreased with increasing acidity. Plant growth in the acidified and unlimed treatments of all soils was best described by Al-HQ in SS, KCl or CaCl2 (r2=0.68–0.70). Multiple regression of relative yield against Al or pH with the concentration of P in SS increased the percentage variation explained by 10% and 30%, respectively. Early nodulation was well correlated (r2=0.67–0.91) with pH or exch. H, Al-tot or exch. Al and Al-HQ. No improvement in the correlation was gained by including P using multiple regression. At constant ionic strength, increasing the valence of the extracting cation decreased the ability of soil tests to distinguish phytotoxic Al.  相似文献   

15.
Summary The cellular structures of acid rain-irrigated needles of several provenances of Norway spruce (Picea abies L. Karst) seedlings were studied after winter experimental freezing. Frost injuries and recovery were characterized by visual damage scoring and classification of mesophyll cell alterations, also using histochemical methods for carbohydrate fluorescent staining. The treatment with-30° C during the late dormancy period was sufficient to cause significant injuries and intracellular degradation in the tissues of the green needles. The most affected seedlings in terms of visual injury scoring were found among those treated with clean water or at pH 3, while freezing injury, defined as an occlusion of phenolic substances in the central vacuole of the mesophyll cells, was most abundant in the needles from spruces irrigated either with clean water or at pH 4 or pH 3. Electron microscopy revealed the details of the injury, e. g. thinning out of the cytoplasm and chloroplast stroma, darkening of the chloroplasts and eventually swelling of the chloroplasts and protoplast. PAS and ConA reactions in the needle tissue revealed intense starch accumulation in the mesophyll and transfusion tissues as early as in March, with a tendency to increase, especially in the untreated needles during the recovery period. Plasma membrane disturbances were indicated by histochemical identification of callose deposits in the mesophyll cell walls, these being most abundant in the acid rain-treated needles. All these findings suggest that freezing at –30° C was more deleterious to the seedlings pretreated with acid or clean water than to those not given additional irrigation.  相似文献   

16.
Summary The effects of aluminium concentrations between 0.2 and 30 mM at pH 3.8 ±0.2 on small plants of Norway spruce [(Picea abies (L.) Karst], Scots pine (Pinus sylvestris L.), and Scots pine infected with the ectomycorrhizal fungus Suillus bovinus (L. ex Fr.) O. Kuntze were investigated. The plants were grown at maximum relative growth rate (RG % day–1) with free access but very low external concentrations of nutrients. Steady-state conditions with respect to relative growth rate (RG) and internal nutrient concentrations were achieved before addition of aluminium, which was added as AlCl3 and/or Al(NO3)3. There were reductions in rg at aluminium concentrations of 0.3 mM in spruce, 6 mM in pine and 10 mM in ectomycorrhizal pine, i. e. at aluminium concentrations considerably higher than those normally occurring in the top layer of the mineral soil where most fine roots are found. Nutrient uptake rate per unit root growth rate was calculated for different nutrient elements. The uptake rate of calcium and magnesium was reduced at aluminium concentrations of 0.2 mM (spruce), 1 mM (pine) and 3 mM (ectomycorrhizal pine), without influencing Rg. The results question the validity of the hypothesis of aluminium toxicity to forest tree species at low external concentrations.  相似文献   

17.
Norway spruce (Picea abies (L.)Karst.) from seven seed sources was grown in a greenhouse with 8.3 and 14.7 kJ·m−2·d−1 m UV-BBE (biologically effective UV-B: 280–320 nm) irradiation, and with no supplemental irradiation as control. The seedlings total biomass (dry weight) and shoot growth decreased with high UV-B treatment but spruce from low elevation seed sources were more affected. The seedlings grown at the highest UV-B irradiance (14.7 kJ·m−2·d−1) showed from 5 to 38% inhibition of total biomass and 15 to 70 % shoot growth inhibition. Norway spruce populations from higher altitude seed sources manifested greater tolerance to UV-B radiation compared to plants from low altitudes. Changes in phospholipids and protective pigments were also determined. The plants grown at the lower UV-B irradiance (8.3 kJ·m−2·d−1) showed greater ability to concentrations UV-B-absorbing pigments then control plants. Chlorophyll a fluorescence parameter Rfd, (Rfd=(Fm-Fs)/Fs) showed a significant decrease in needles of UV-B treated plants and this correlated with the altitude of seed source. Exposure to UV-B affect levels of the ratio of variable to maximum fluorescence (Fv/Fm). Results from this study suggest that the response to increased levels of UV-B radiation is depended upon the ecotypic differentiation of Norway spruce and involved changes in metabolites in plant tissues.  相似文献   

18.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   

19.
Considerable knowledge exists about the effect of aluminium (Al) on root vitality, but whether elevated levels of Al affect soil microorganisms is largely unknown. We thus compared soils from Al-treated and control plots of a field experiment with respect to microbial and chemical parameters, as well as root growth and vitality. The field experiment was established in a 50-year-old Norway spruce (Picea abies L.) stand where no Al or low concentrations of Al had been added every 7–10 days during the growth season for 7 years. Analysis of soil solutions collected using zero tension lysimeters and porous suction cups showed that Al treatment lead to increased concentrations of Al, Ca and Mg and lower pH and [Ca + Mg + K/Al] molar ratio. Corresponding soil analyses showed that soil pH remained unaffected (pH 3.8), that exchangeable Al increased, while exchangeable Ca and Mg decreased due to the Al treatment. Root in-growth into cores placed in the upper 20 cm of the soil during three growth seasons was not affected by Al additions, neither was nutrient concentration or mortality of these roots. The biomass of some taxonomic groups of soil microorganisms, analyzed using specific membrane components (phospholipid fatty acids; PLFAs), was clearly affected by the imposed Al treatment, both in the organic soil horizon and in the underlying mineral soil. Microbial community structure in both horizons was also clearly modified by the Al treatment. Shifts in PLFA trans/cis ratios indicative of short term physiological stress were not observed. Yet, aluminium stress was indicated both by changes in community structure and in ratios of single PLFAs for treated/untreated plots. Thus, soil microorganisms were more sensitive indicators of subtle chemical changes in soil than chemical composition and vitality of roots.  相似文献   

20.
 Before using bark to determine the degree of acidity in the environment due to atmospheric pollution, a better understanding of the internal factors which are involved in the evolution of the physico-chemical characteristics of bark is necessary. In this paper, variation of acidity and bark conductivity over the trunk length of silver fir and Norway spruce are examined. First, we show that it is more accurate to measure average bark pH and conductivity in each 2 m section of a tree by starting at the top than by starting at the base of the tree. A positive pH and conductivity gradient is observed over the trunk length; bark thickness decreases towards the top of the trunk. In the upper part of both silver fir and Norway spruce there are good correlations between acidity, conductivity, bark thickness and height, but in the lower part of the trees, silver fir and Norway spruce show contradictory behaviour. In silver fir, pH is linked with bark thickness and distance from the ground, while conductivity is not correlated with these two criteria. In Norway spruce we observe opposite results. It appears that conductivity measured on the external part of bark is directly influenced by the proximity of internal tissues, which are rich in ions, while acidity depends on the length of exposure to leaching due to water flowing down the trunk. Received: 15 June 1993/Accepted: 30 January 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号