首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定   总被引:3,自引:0,他引:3  
利用激光剥蚀电感耦合等离子体质谱(LA-ICPMS)微区原位分析方法,对采自西太平洋海山具完整三层结构的富钴结壳样品进行了稀土元素(REE)含量测定,结果表明, 虽然均产于西太平洋海山且均具有明显的三层结构,富钴结壳化学组成受地理位置和沉积环境影响很大。绝大多数西太平洋富钴结壳具有高ΣREE、高LREE/HREE、δCe正异常和δEu基本无异常或微弱正异常的特点, 显示它们主要由正常海水沉积形成。结壳不同层圈之间REE组成有较大的区别, 其原因主要在于其形成环境和矿物组成不同。样品0327稀土元素总量(∑REE)由亮煤层到疏松层到外层逐渐升高,且亮煤层δCe和Y/Ho变化非常大,最大值分别为38.61和105.5,显示该层生长环境较为氧化且相对动荡,而样品0346中三层结构的∑REE都非常高,且变化趋势与0327正好相反,从亮煤层到致密层∑REE有降低的趋势。 亮煤层形成时海水相对较氧化的环境有利于铁锰氧化物的形成和Ce4+等稀土元素的吸附,导致其中ΣREE较疏松层和外层为高,而后期磷酸盐化导致REE元素的迁移和亏损。在结壳生长剖面上,由最外层到疏松层和亮煤层,δCe呈明显上升趋势,且变化范围趋大,说明该结壳所处的海水环境在由老至新的生长过程中由相对动荡和氧化变为相对平静和还原。  相似文献   

5.
The mineral and chemical compositions of a set of crust samples collected from the North, Central and South Atlantic were examined by means of analytical electron microscopy and ICP-MS, chemical, and microchemical elemental analysis. The dominant mineral phases of the crusts are vernadite, asbolane, and goethite, with minor ferrihydrite, and rare hematite and feroxyhyte. The samples show wide variability in major and trace elements; however, their characteristic geochemical signatures indicate hydrogenetic origin. A comparison between the compositions of oceanic hydrogenetic and hydrothermal crusts and metalliferous hydrothermal sediments from different ocean areas suggests that the geochemical approach may be insufficient in some cases and fail to identify a hydrothermal input in ferromanganese crusts of a mixed composition.  相似文献   

6.
The behavior of dissolved Hf in the marine environment is not well understood due to the lack of direct seawater measurements of Hf isotopes and the limited number of Hf isotope time-series obtained from ferromanganese crusts. In order to place better constraints on input sources and develop further applications, a combined Nd-Hf isotope time-series study of five Pacific ferromanganese crusts was carried out. The samples cover the past 38 Myr and their locations range from sites at the margin of the ocean to remote areas, sites from previously unstudied North and South Pacific areas, and water depths corresponding to deep and bottom waters.For most of the samples a broad coupling of Nd and Hf isotopes is observed. In the Equatorial Pacific εNd and εHf both decrease with water depth. Similarly, εNd and εHf both increase from the South to the North Pacific. These data indicate that the Hf isotopic composition is, in general terms, a suitable tracer for ocean circulation, since inflow and progressive admixture of bottom water is clearly identifiable.The time-series data indicate that inputs and outputs have been balanced throughout much of the late Cenozoic. A simple box model can constrain the relative importance of potential input sources to the North Pacific. Assuming steady state, the model implies significant contributions of radiogenic Nd and Hf from young circum-Pacific arcs and a subordinate role of dust inputs from the Asian continent for the dissolved Nd and Hf budget of the North Pacific.Some changes in ocean circulation that are clearly recognizable in Nd isotopes do not appear to be reflected by Hf isotopic compositions. At two locations within the Pacific Ocean a decoupling of Nd and Hf isotopes is found, indicating limited potential for Hf isotopes as a stand-alone oceanographic tracer and providing evidence of additional local processes that govern the Hf isotopic composition of deep water masses. In the case of the Southwest Pacific there is evidence that decoupling may have been the result of changes in weathering style related to the buildup of Antarctic glaciation.  相似文献   

7.
Layered ferromanganese crusts collected by dredge from a water depth range of 2770 to 2200 m on Mendeleev Ridge, Arctic Ocean, were analyzed for mineralogical and chemical compositions and dated using the excess 230Th technique. Comparison with crusts from other oceans reveals that Fe-Mn deposits of Mendeleev Ridge have the highest Fe/Mn ratios, are depleted in Mn, Co, and Ni, and enriched in Si and Al as well as some minor elements, Li, Th, Sc, As and V. However, the upper layer of the crusts shows Mn, Co, and Ni contents comparable to crusts from the Atlantic and Indian Oceans. Growth rates vary from 3.03 to 3.97 mm/Myr measured on the uppermost 2 mm. Mn and Fe oxyhydroxides (vernadite, ferroxyhyte, birnessite, todorokite and goethite) and nonmetalliferous detrital minerals characterize the Arctic crusts. Temporal changes in crust composition reflect changes in the depositional environment. Crust formation was dominated by three main processes: precipitation of Fe-Mn oxyhydroxides from ambient ocean water, sorption of metals by those Fe and Mn phases, and fluctuating but large inputs of terrigenous debris.  相似文献   

8.
太平洋海底富钴结壳中的烃类有机质及其成因意义   总被引:1,自引:0,他引:1  
用气相色谱-质谱(GC-MS)联测方法测定了中西太平洋海底海山富钴结壳中的可溶有机质,对其丰度、生源构成、沉积环境、成熟度等方面进行了初步的探讨.富钴结壳的烃类生物标志化合物大多具成熟烃特征,个别具低成熟烃特点."A"/C高达9.81~21.15,显示出运移烃的特征;藿烷C31-R(S JR)为0.43~0.46,Tm/(Tm Ts)为0.40~0.59,C30αβ藿烷/(αβ藿烷 βα莫烷)为0.85~0.89,C29αβ藿烷/(αβ藿烷 βα莫烷)为0.81~0.85,c29甾烷20S/(20S 20R)为0.45~0.60,从而计算出Rsc(%)为0.73%~0.81%,个别达到1.06%;C29αββ/(αββ ααα)为0.35~0.42.甾烷丰度顺序为C29甾烷>C27甾烷>C28甾烷,同时检出了孕甾烷和4-甲基甾烷,重排甾烷三角图显示该有机质为Ⅱ型.Pr/Ph值介于0.35~0.82,显示植烷优势.说明烃类形成于强还原环境.链状烷烃、类异戊二烯烷烃、萜烷、甾烷化合物的组成和分布都说明茵藻类低等水生生物和陆源高等植物混合生源输入.洋底热液活动是富钴结壳中有机质热演化的重要热源.有机质在特定的海底条件下生成,并被运移到海山上,通过扩散和浸粢由外层进入结壳.  相似文献   

9.
10.
The concentrations of rare-earth elements and yttrium (REY) were first determined in four major mineral fractions of cobalt-rich ferromanganese crusts (CMC) from the Detroit guyot at the northern latitudes of the Pacific Ocean. It was shown that REY in the CMC from these latitudes are mainly adsorbed by the manganese phase unlike the crusts of the equatorial part of the ocean where iron hydroxides are the key REY sorbents from seawater. This is caused by the variations in the hydrochemical characteristics of seawater with the latitude of the CMC formation.  相似文献   

11.
The Marcus Wake and Magellan guyots formed about 129–74 Ma ago at 10°–30° S and drifted 1700–4400 km to their present-day latitudinal position across the equatorial zone of maximum deposition. Cooling of the Pacific plate brought these guyots to the northern arid zone during the Turonian–Maastrichtian, to depths at which sediment accumulation rates were low and the conditions promoted precipitation of Co-rich Fe–Mn crusts from the Campanian to the present. Nonprecipitation of Co-rich Fe–Mn crusts during the Oligocene was caused by the action of bottom currents. The presence of a hiatus identified in cores from drill holes was used as the basis for reconstruction of the directions of bottom currents in the Oligocene.  相似文献   

12.
本文分析了中西太平洋海山富钴结壳及其各主要层圈(外层、疏松层、亮煤层)和玄武岩基岩的铂族元素(PGE)和Au含量以及Os同位素组成,发现富钴结壳中PGE和Au含量均较高,且变化很大,∑PGE为(70.09~629.26)×10-9,平均289.48×10-9,Au为(0.60~26900)×10-9.具三层结构的富钴结壳中,疏松层(∑PGE=(339.37~545.82)×10-9)和亮煤层(∑PGE=(280.09~629.26)×10-9)的∑PGE明显高于外层((70.09~133.27)×10-9.单层结壳的∑PGE为(83.94~479.75)×10-9,Au含量普遍高于具三层结构者.结壳的∑PGE和Au含量远高于太平洋多金属结核(分别为(101.57~155.83)×10-9和(1~4)×10.沉积深度和海水氧逸度的不同是导致结壳和结核中PGE含量明显差异的主导因素.富钴结壳∑PGE和Pt与Mn(%)之间呈明显的正相关关系,而与Fe(%)具负相关性,与多金属结核正好相反,显示结壳中的PGE主要赋存在水羟锰矿(8-MnO2)等锰矿物相中,与针铁矿(FeOOH·nH2O)等铁矿物相关系不大,而结核中的PGE主要赋存在铁矿物相中.PGE球粒陨石标准化曲线和各项参数显示富钴结壳的PGE和Au主要来自海底玄武岩的蚀变释放,部分来自铁陨石微粒等地外物质,而与海底热水活动无关.计算显示西太平洋结壳距今42.5 Ma左右开始生长,生长过程中分别在8.OMa和21.8Ma处出现间断,相应形成外层、疏松层和亮煤层,其各自沉积速率为2.64 mm/Ma,1.45 mm/Ma和1.06 mm/Ma,相应海水的187Os/188Os分别为0.948~0.953,0.599~0.673和0.425~0.536,显示外层含有较多的大陆风化尘,而疏松层和亮煤层的沉积物主要来自海底洋壳蚀变和陨石碎屑或宇宙尘等地外物质.  相似文献   

13.
14.
Marine ferromanganese nodules and crusts containing Mn, Cu, Ni and Co in the most promising resource-grade concentrations and quantities, together with Fe and Zn (all elements of biogeochemical importance) are found far from land on the deep seafloor of the Pacific Ocean. The biogeochemical, chemical and physical mechanisms contributing to their formation, distribution, abundance and – for these six elements – variability in their concentrations in these deposits, are the main focus of the present review. The mechanisms addressed include biological productivity, sedimentation types and rates, bottom water characteristics, the Calcium Carbonate Compensation Depth, the depth and intensity of the oxygen minimum zone, and biogeochemical characteristics of the six focal elements. Particular attention is given to comparisons between the deposits found in the north and the south Pacific, in order to present an overarching view of our current understanding of the mechanisms that apply to both nodules and crusts in both oceanic hemispheres, including examination of the possible existence of a marine ferromanganese oxide continuum. The renewed interest in the commercial exploitation of these deposits has stimulated a welcome increase in scientific research that is essential to informing the public discourse on seabed mining. We briefly reflect on the work addressed in this review in that context.  相似文献   

15.
文章通过对采自太平洋海域不同海山上68个结壳样品中Te元素地球化学特征的研究,探讨了富钴结壳中控制Te元素富集的古海洋氧化还原环境及其富集机制。分析表明,太平洋海域中大多数结壳的w(Te)变化于13.4×10-6~115.8×10-6,平均50×10-6,是海水w(Te)的109倍;结壳中w(Te)与Mn/Fe比值呈正相关,相关系数为0.51;与Fe呈负相关,相关系数为-0.61,显示结壳中Te与Co有类似的地球化学特征。古海水氧化还原环境的改变是控制结壳中Te元素含量变化的重要因素;能反映古海水氧化还原环境的Ce异常与结壳中Te含量基本呈同步变化趋势,Te含量具有随古海水氧化程度减弱而降低的特征。结壳中Te元素的富集主要受控于其内的Mn/Fe比值。Te元素的富集机制除被海水中带微弱正电荷的FeOOH胶体以库伦静电吸附外,还可能与δ-MnO2表面上以一种表面络合物方式的富集机制有关。Te进入结壳的存在形式及其在不同古海洋环境中的富集机制还有待进一步研究和探讨。  相似文献   

16.
Possible sources of gallium in hydrothermal-sedimentary ferromanganese crusts of the Belyaevsky Seamount (Central Basin, Sea of Japan) are considered. Studies with successive selective leaching have shown that ~ 80% of Ga are present in the manganese fraction. The Changbaishan Volcano ash with up to 35.3 ppm Ga has been found in the marine sediment column located in the immediate vicinity of the Belyaevsky Seamount. This suggests that Ga of the Fe–Mn crusts of the seamount was supplied with the ash of volcanic rocks containing up to 300 ppm Ga.  相似文献   

17.
Communication 1 of the present paper is devoted to various aspects of the hydrogenic ferromanganese crusts in the western and eastern clusters of the Magellan Seamounts in the Pacific. It was revealed that crusts are developed on guyots as a continuous sheet of Fe-Mn minerals on exposures of primary rocks. They commonly make up ring-shaped deposits along the periphery of the summit surface and in the upper sectors of slopes. Thickness of the crust varies from n to ~18 cm and shows irregular variations in separate layers. Irrespective of the geographic position, crusts are composed of four layers—two lower phosphatized (I-1 and I-2) and two upper nonphosphatized (II and III) layers. The crusts differ in terms of structure and texture, but they are sufficiently similar within separate layers (I-1, I-2, and others). The major ore minerals in crusts are commonly represented by poorly crystallized and low-ordered minerals (Fe-vernadite and Mn-feroxyhyte); the subordinate mineral, by the well-crystallized and ordered vernadite. It has been established that heavy and rare metal cations are concentrated extremely irregularly in ore minerals of the crusts, suggesting a pulsating mode of their input during different geological epochs.  相似文献   

18.
The results of experimental studies of ion exchange properties of Co-bearing ferromanganese crusts in the Magellan Seamounts (Pacific Ocean) are discussed. Maximum reactivity in reactions with the participation of manganese minerals (Fe-vernadite, vernadite) is typical of Na+, K+, and Ca2+ cations, whereas minimum activity is recorded for cations Pb2+ and Co2+. The exchange complex of ore minerals in crusts is composed of Na+, K+, Ca2+, Mg2+, and Mn2+ cations. The exchange capacity of manganese minerals increases from the alkali metal cations to rare and heavy metal cations. Peculiarities of the affiliation of Co2+, Mn2+, and Mg2+ cations in manganese minerals of crusts are discussed. In manganese minerals, Co occurs as Co2+ and Co3+ cations. Metal cations in manganese minerals occur in different chemical forms: sorbed (Na+, K+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, and Pb2+); sorbed and chemically bound (Mg2+, Ni2+, Y3+, La3+, and Mo6+); and only chemically bound (Co3+). It is shown that the age of crust, its preservation time in the air-dry state, and type of host substrate do not affect the ion exchange indicators of manganese minerals. It has been established that alkali metal cations are characterized by completely reversible equivalent sorption, whereas heavy metal cations are sorbed by a complex mechanism: equivalent ion exchange for all metal cations; superequivalent, partly reversible sorption for Ba2+, Pb2+, Co2+, and Cu2+ cations, relative to exchange cations of manganese minerals. The obtained results refine the role of ion exchange processes during the hydrogenic formation of Co-bearing ferromanganese crusts.  相似文献   

19.
Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of ɛNd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic compositions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses.  相似文献   

20.
Thick hydrogenetic ferromanganese (FeMn) crusts from the northwest and central Pacific seamounts often show a distinct dual structure composed of a typical hydrogenetic porous, friable upper part of FeMn oxides (Layer 1) and the underlying dense, hard phosphatized growth generation of FeMn oxides (Layer 2 in this study). Layer 2 always appears above the substrate rock and composes the lower part of the crust; it is never found as the upper crust layer in contact with seawater. The chemical composition of Layer 2 clearly differs from the younger Layer 1 hydrogenetic FeMn oxides, and is depleted in Fe, Al, Ti, and Co, and enriched in Ni, Cu, and Zn relative to Layer 1. The Be isotope age models of the crusts were refined with paleomagnetic and paleontological information, and applied to selected crust samples. The age model indicates fairly continuous growth from the substrate to the surface and fairly constant growth rates during the past 17 Ma. The growth rate from the Miocene to the present has varied by a factor of two, about 2–4 mm/Myr in Layer 1, while Layer 2 has similar but more variable growth rates than Layer 1.The calculated age for the base of Layer 1, and possibly the age of termination of phosphatization, is never younger than the late Miocene. The age seems to vary with water depth, shallower-water crusts (between 991 and 1575 m) showing a younger age of about 10 Ma whereas the deeper-water (2262 m) crusts have extrapolated ages for the base of Layer 1 of be 17.1 ± 2.5 Ma. This trend indicates that phosphatization took place in a less-oxidizing environment during growth of Layer 2, followed by a weakened oxygen-minimum zone or intensified AABW during growth of Layer 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号