首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
铊—寻找微细浸染型金矿的指示元素   总被引:2,自引:0,他引:2  
本文对桂西北几个微细浸染型金矿床研究表明:Tl在矿石中富集,K/Tl、Ba/Tl比值,矿石中明显低于围岩,Tl含量、K/Tl、Ba/Tl比值离差小,变化稳定,利用他们作为指示元素及特征比寻找微细浸染型金矿床是一条可行途径。  相似文献   

2.
从As、Sb、Hg、Tl和Ba元素在微细浸染型金矿中的性状出发,探讨了微细浸染型金矿床中指示元素的分带规律及其形成原因,并指出了利用指示元素及其组合对寻找微细浸染型金矿的广阔前景。  相似文献   

3.
经区域化探异常查证及矿点检查所发现的王家沟金矿床产于商丹断裂南侧,是南秦岭泥盆系北成矿带新发现的一处小型矿床,其矿化地质特征完全可与镇-旬地区的微细浸染型金矿床相类比.王家沟金矿床矿脉严格受断裂构造控制,矿石中金以微细浸染产出,并富含砷、锑和汞.因此,王家沟金矿床的发现使柞水-山阳晚古生代沉积地区也成为微细浸染型金矿床的新产地,对今后在柞水一山阳寻找微细浸染型矿床具有重要借鉴意义.  相似文献   

4.
桂西金牙微细浸染型金矿床成矿时代分析   总被引:1,自引:0,他引:1  
桂西金牙微细浸染型金矿床成矿时代分析李泽琴,陈尚迪,李福春(成都理工学院,成都610059)(中国有色金属总公司地质研究院,桂林541004)关键词金、微细浸染型、同位素年龄桂西金牙微细浸染型金矿床是滇黔桂“金三角”金矿集中区桂西北一侧具代表意义的金...  相似文献   

5.
甘肃省阳山金矿床石英脉中锆石SHRIMP U-Pb年代学研究   总被引:30,自引:6,他引:30  
为研究阳山特大微细浸染型金矿床的成矿时代,文章结合阴极发光对矿区不同类型石英(细)脉中锆石进行了SHRIMPU_Pb年龄的精确测定。结果表明,微细浸染型矿石中锆石呈自形柱状,韵律性环带结构发育,Th/U比值集中于0 .5~1.5之间,具岩浆岩锆石特征,锆石2 0 6Pb/2 3 8U年龄有3组,分别为(197.6±1.7)Ma、(12 6 .9±3.2 )Ma和(5 1.2±1.3)Ma ,其中前一组年龄与矿区斜长花岗斑岩脉的形成时代一致,而后两组年龄指示矿区存在白垩纪及第三纪隐伏岩浆岩体,表明阳山微细浸染型金矿床的形成与中、新生代3次岩浆热液活动有关。矿区含明金石英脉型矿石中所测得的锆石年龄均老于围岩时代。不同时代多期次热液活动在空间上的耦合是形成阳山金矿床的重要因素。  相似文献   

6.
卢盛明  李仕荣 《矿物岩石》1992,12(3):98-103
在研究松潘某微细浸染型金矿床的矿石特征和金赋存状态的基础上,根据产出深度,矿石的颜色、特征组构、特征矿物及其组合、游离自然金的含量、碳质(石墨)的多少、特征元素含量或相关元素比值等因素,从矿物学角度划分出矿床的氧化带、混合带和原生带,并提出划分方案和判别标志。  相似文献   

7.
川西北发现新的金矿床类型——交代石英岩-矽卡岩型金矿床陕甘川“金三角”地区同时发现许多岩金矿床,其矿石类型主要为硅质板岩、碳质板岩、硅化灰岩、硅质岩、杂砂岩等,金矿化以微细浸染型金矿化为主,成因主要由加热的下渗天然水通过环流将矿源层中的成矿物质活化并...  相似文献   

8.
本文详细论述了革档金矿床的地质特征,从矿床地质、矿石矿物的化学成分、矿物流体包裹体、稳定同位素等不同角度阐明了金矿床的地球化学特征,认为革档金矿是构造-热液成因的微细浸染型矿床。  相似文献   

9.
对内华达科木矿区含金银石英脉和火山岩计92个样品做了Au、Ag、Tl、Rb、K和Sr分析,并得K/Tl、K/Rb、Ba/Tl,Tl/Sr和Rb/Sr等一系列数据。Au和Ag的浓度从未蚀变安山岩到蚀变安山岩至含Au-Ag石英脉随Tl/Sr和Rb/Sr比值升高而增大,但K/Tl,K/Rb和Ba/Tl的比值降低。Tl、Rb和K之间的上述关系,表明矿化岩石中三者的富集程度依次降低。本项研究获得的数据,表明Tl含量和Ba/Tl及K/Tl比值在圈定与火山岩有关的贵金属脉状矿床时,可作为有用的勘查工具,同时表明,由于在自然界中Au-Ag分布的不均匀性,它们的富集度的变化范围很大。  相似文献   

10.
微细浸染型金矿床成矿物质来源   总被引:1,自引:0,他引:1  
任耀武 《青海地质》1999,8(1):42-48
通过对我国微细浸染型金矿床稳定同位素、黄铁矿微量元素及REE特征等的分析研究发现;硫源既有深源特征:又有浅源(地层源)特征;含矿热液既有变质水、天水特征,又有岩浆水特征。矿石中黄铁奔放微量元素主要反映沉特征;REE演化特征表明:矿民 有生因联系,据此认识,微细浸染型金矿床成矿物质具多来源性,既有地层源又有岩浆--热液源,以前者为主。前者是成矿的基础,后者是(矿石)叠加变富条件。  相似文献   

11.
李松涛 《地质与勘探》2022,58(3):475-488
黔西南滥木厂矿床是世界上罕见的汞(大型)-铊(大型)-金(小型)多金属矿床,具有独特的成矿元素分带现象。本文通过系统研究滥木厂矿床金、汞-铊、汞、铊矿石及围岩样品的主量、微量及稀土元素地球化学特征,对比分析不同类型矿化的成矿环境,以探讨成矿元素共生分离机制。研究表明,相对于滥木厂矿床的围岩样品,同岩性的各类矿化岩石的SiO_(2)含量显著增加,CaO和MgO含量之和明显降低,表明成矿过程中伴随广泛的硅化和去碳酸盐化作用,K_(2)O-Al_(2)O_(3)投图表明区内存在显著的高岭石化作用。各类矿石与围岩均显示Au、As、Sb、Hg、T1和轻稀土富集特征,且具有相似的稀土配分模式;但成矿元素分布于不同的特征因子中,并表现出富集程度的差异,表明成矿物质继承了原岩的部分地球化学特征,在成矿过程中发生了分离。Y/Ho比值在金矿石中普遍高于28,在其它矿化类型岩石中均低于28,反映金成矿热液富含氟络合物,汞和铊成矿热液以碳酸氢根的络合物为主。各类矿石通常具有Ce正异常,铊、汞-铊和金矿石普遍显示Eu正异常,汞矿石呈现轻微的Eu负异常,表明成矿环境处于相对氧化的状态,并具氧化还原波动性。综合元素地球化学特征与收集的碳、氢、氧、硫、铅同位素成果,认为滥木厂矿床金、汞、铊矿化的成矿物质及成矿流体具有多源性,各类矿化在温度、氧逸度、酸碱性及配合物类型等方面的差异可能是成矿元素产生分异的重要原因。  相似文献   

12.
笔者简单介绍了乔夏哈拉铜(铁)金矿床的基本成矿及其微量元素地球化学特征,指出其主矿体具有“垂向分带”及“铜、金向下同步富集”的特点,认为其容矿火山岩与中基性侵入岩脉具有基本相似的微量元素地球化学行为,铜、金矿石同其容矿火山岩相比具有相对贫K、Rb、Th、Ba,相对富W、Ni、Co、As、Sb、Zn及明显偏低的Th/Ta、La/Yb值。研究稀土元素地球化学,发现铜、金矿石具有明显不同于其容矿火山岩的强Eu富集,后期形成的地质体一般具有相对更为偏低的∑REE值。综合分析表明,该铜(铁)金矿床为一与“层状夕卡岩”有关的火山热液型“层控”矿床。  相似文献   

13.
Some geological, petrochemical, and geochemical characteristics of carbonaceous shales as a new unconventional natural source of gold and PGE are considered by the example of the Kimkan and Sutyr’ units of the Bureya massif (southern Far East, Russia). It is shown that shales of the units belong to the terrigenous-carbonaceous and siliceous-carbonaceous formations. They accumulated in deep-water trenches, and the active continental margin was probably their main provenance. The carbonaceous terrigenous-sedimentary units and precious-metalores in them show specific petrochemical characteristics different for complexes with predominantly PGE and gold mineralization. According to these characteristics, carbonaceous complexes with high Fe contents, low total contents of alkalies, and high K/Na ratios are promising for PGE-rich ores. Gold ores are usually localized in black-shale strata with high total contents of alkalies and low K/Na. In this respect, the shales and Fe-ores of the Kimkan unit obviously contain high-PGE mineralization, while the rocks of the Sutyr’ unit can bear gold deposits. We assume that the PGE mineralization is genetically related to the formation and transformation of carbonaceous rocks. At the same time, most of gold in the carbonaceous shales is native and is not related to carbon; it is present in mineral assemblages resulted from superimposed sulfidization and silicification.  相似文献   

14.
微细浸染型(卡林型)金矿成矿过程中碳和有机质的作用   总被引:10,自引:2,他引:10  
李九玲  亓锋  徐庆生 《矿床地质》1996,15(3):193-206
在众多关于黔滇桂微细浸染型(卡林型)金矿研究成果的基础上,本文通过本类型金矿含碳及有机质的特征;金能形成金属有机化合物及原子簇化合物的特征的研究。提出金以金属有机化合物形式在本区上二叠统富含生物成因有机质的煤系地层中形成预富集;在区域热变质作用中,金以气相金属有机化合物方式向上运移,蓄积在上二叠统至中三叠统各层位的背斜和穹隆部位;动力变质带的断裂活动引起物理化学突变,使金的气相金属有机化合物在构造断裂带解体、裂化从而形成了含细分散碳质的微细浸染型含金硫化物原生矿化;并探讨了主成矿期后与有机质解体有关的叠加热液活动和表生氧化作用对原生矿化的改造。从而从有机质演化角度初步建立了此类型的成矿模式  相似文献   

15.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

16.
陈代演  王华 《矿物学报》1996,16(3):307-314
本文以地球化学过程基本定律为指导,根据区域和矿区外围八条剖面169件样品的分析数据,采用柯尔莫各洛夫非参数正态检验法,对黔西南铊矿床(点)赋矿地层中成矿元素Tl、Au、Hg、Sb、As、Pb、Zn的丰度值进行了研究。  相似文献   

17.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

18.
位于右江盆地南部的滇东南底圩金矿床是近年来新发现的一处金矿床,为理清其成因,对不同类型矿石和赋矿围岩进行了主、微量元素及硫化物的硫同位素分析.结果表明,相较于赋矿围岩,矿石中明显富集Au、As、Sb、Hg、Tl、S、K、C元素,应为热液带入;而Si、Mg、Fe、Zr 和Th在矿石和围岩中变化不大,Fe主要来源于赋矿围岩...  相似文献   

19.
席伟  夏小洪  吴艳爽  叶甜  李诺 《地学前缘》2018,25(5):135-150
Taldybulak Levoberezhny(又称左岸)矿床位于吉尔吉斯斯坦北天山东段,是区内第三大金矿(金储量130 t,平均品位6.9 g/t)。长期以来,该矿床矿物学研究薄弱,成因类型存在争议,已有观点包括斑岩型、造山型、多阶段叠加成矿等。野外地质调查及室内岩相学鉴定发现:金矿化同时受韧性剪切带和岩体控制,局部显示一定的顺层特征;常见矿石类型包括浸染细脉浸染型、石英电气石硫化物型、块状硫化物型、稀疏浸染型、方解石硫化物脉型等;相关围岩蚀变以硅化、绢云母化、电气石化、碳酸盐化最为强烈,可见绿泥石化、绿帘石化、泥化等。电子探针分析发现,左岸金矿同时发育可见金和不可见金。前者包括银金矿(w(Au)=67.90%~80.86%,w(Ag)=14.24%~30.76%)、含银自然金(w(Au)=88.95%,w(Ag)=8.09%)等,以包体金、裂隙金或粒间金形式赋存于黄铁矿中。后者可赋存于黄铁矿和黄铜矿中(w(Au)=0.16%~0.33%)。不同类型矿石中黄铁矿的形态、结构、成分存在一定差异,显示了叠加成矿的可能性。浸染状细脉浸染型矿石中黄铁矿以中粗粒(30~1 300 μm,多数>200 μm)、半自形自形立方体为主,基本无碎裂或碎裂不明显,可含有自然金、银金矿或硅酸盐包体;成分上具有中等的As(0.03%~1.72%,平均0.66%)、Co(0.06%~0.19%,平均0.13%)、Te(0.03%~0.06%,平均0.04%)含量和As/S、Fe/S、Co/As比值,基本不含Cu、Pb、Zn、Ag。石英电气石硫化物型矿石中黄铁矿多呈中粗粒(30~2 000 μm)、半自形它形粒状,往往发生碎裂,并被黄铜矿、方铅矿等矿物交代;部分颗粒可含有银金矿或硅酸盐包体;总体具有较高的As(0.05%~2.05%,平均0.97%)、Co(0.05%~0.34%,平均0.15%)含量和As/S、Fe/S比值,Co/As比值较低。块状硫化物型矿石中黄铁矿多呈半自形它形粒状产出,但粒度变化较大(250~3 000 μm或者30~300 μm);化学成分上以较高的As(0.05%~2.20%,平均1.21%)、Te(0.04%~0.09%,平均0.06%)含量,高的As/S、Fe/S比值和低的Co/As比值为特征。稀疏浸染型矿石中黄铁矿呈中粒(集中于50~200 μm)、半自形它形粒状产出,内部可含有硫化物、硅酸盐、银金矿、自然金等包体;可发生碎裂并被黄铜矿等沿裂隙充填交代;化学成分变化较大,总体具有较高的Co(0.08%~1.04%,平均0.35%)含量和Co/As比值,几乎不含Te、Cu、Zn。方解石硫化物脉型矿石中黄铁矿呈中粗粒(40~480 μm)、半自形它形粒状产出,内部往往含硅酸盐等包体;黄铁矿以显著低的As(0.04%~0.08%,平均0.06%)、Co含量(0.04%~0.20%,平均0.10%)以及As/S、Fe/S比值为特征,Co/As比值较高,且不含Zn。从上述左岸金矿的控矿构造、矿化类型、围岩蚀变以及不同类型矿石中黄铁矿形态、结构、成分的差异等4方面特征显示,左岸金矿可能存在多期次矿化、叠加成矿。  相似文献   

20.
古铜陵地区是长江中下游成矿中重要的多金属成矿区,有着独特的多位一体、"层".带"结合、多矿种、多种成因类型复合的成矿地质环境,产生了丰富的接触交代与层控式夕卡岩-热液充填交代的块状硫化物型的铜、金、银、硫等内生矿产,成为国内外地学研究的热点地区.本文从铊元素的地球化学研究探寻其作为金(铜)矿床的探途元素的可能,从本区一些主要矿床中过铊与金(铜)相关性的研究,得出铊与金(铜)密切正相关的结论,并进行了微量元素铊在找矿方面应用的一些初步探读者论坛,指出下一步找矿方向及预测靶区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号