首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
以半球螺旋槽动静压气体轴承为研究对象,建立球面动静压混合气体轴承的非线性动态润滑计算分析数学模型,采用偏导数法推导出扰动压力控制方程;在广义坐标系下,采用有限差分法对扰动压力控制方程离散化,推导出扰动压力的差分表达式;推导出半球螺旋槽动静压气体轴承刚度和阻尼系数与扰动压力之间的关系表达式;采用VC++6.0编制程序,数值计算出三维微气膜的瞬态扰动压力分布、非线性气膜力及动态刚度系数和动态阻尼系数。研究转速、偏心率及供气压力对气膜动态特性系数的影响规律,结果表明:随着转速、偏心率及供气压力的增大,气膜刚度和阻尼系数均有不同程度的变化。  相似文献   

2.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

3.
以动静压气体径向滑动轴承为研究对象,考虑湍流润滑,基于有限差分方法求解引入湍流因子改良的可压缩雷诺润滑方程,计算湍流润滑动静压气体径向滑动轴承的压力分布,获得轴承承载力、静态刚度、交叉刚度、主刚度、交叉阻尼和主阻尼等表征动静压轴承静动态特性的基本参数,并分析偏心率、槽深、槽数、长径比等结构参数及轴颈转速和供气压力等工况对轴承静动态性能的影响规律。结果表明:连续性狭缝湍流润滑动静压气体径向滑动轴承的静态特性优于非连续性狭缝;轴承承载力随着偏心率、长期径比的增大而增大,随着槽区长度、槽深的增大而减小,槽数对承载力影响不大;轴承静态刚度随着偏心率的增大先增大后减小,随着长径比、槽深、槽数的增大而增大,随着槽区长度的增大而减小;较大的转速和供气压力有助于提升轴承的承载力和静态刚度;随着偏心率的增大,交叉刚度逐渐增大,主刚度先增大而减小,而交叉阻尼和主阻尼均增大。  相似文献   

4.
《轴承》2017,(9)
基于MATLAB编程,利用有限差分法耦合比例分割法求解Reynolds方程,获得静压气体轴承的压力分布;采用偏导数方法,获得静压气体轴承扰动状态下的润滑方程,求解其动态刚度系数以及动态阻尼系数。针对双排孔供气、每排8孔均布的气体轴承模型进行数值计算,分析在特定结构尺寸下静压气体轴承的运行参数(供气压力、转速、偏心率)对其动力学参数及稳定性的影响。结果表明:静压气体轴承的主刚度和主阻尼系数随供气压力及偏心率的增加而增大,主刚度随着转速的增加而增加,主阻尼系数随转速的增加而减少;低频扰动更易使气体轴承发生失稳,适当提高运行偏心率可以提高轴承稳定性。  相似文献   

5.
为进一步改善小孔节流动静压气体轴承的稳定性,对螺旋槽小孔节流动静压气体轴承的动态特性进行了研究。建立不定常工况下的动态雷诺方程,采用偏导数积分法求解动态特性系数。研究有无螺旋槽、涡动比、转速、供气压力以及槽宽和槽深对轴承动态特性的影响规律。结果表明:螺旋槽可以显著提高轴承的动态特性,增加轴承的稳定性;随涡动比的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数都减小;随转速的增大,各刚度系数增加,而各阻尼系数减小;随供气压力的增大,各刚度和阻尼系数均增加;随槽宽的增大,直接刚度系数和阻尼系数呈先增加后减小趋势,交叉刚度系数和阻尼系数变化较小;随槽深的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数先增加后减小。  相似文献   

6.
为优化动静压气体止推轴承的承载特性,设计一种具有螺旋槽和狭缝节流器结构的动静压气体止推轴承,采用Fluent对轴承静态特性进行仿真分析,通过改变主轴转速、供气压力,研究气膜厚度、螺旋槽宽度、狭缝厚度等参数对轴承静态特性的影响。结果表明:相对狭缝节流止推轴承,增加螺旋槽结构可以提升轴承的动压效应增强,从而提升轴承的承载力和刚度;相同条件下,气膜厚度越大,轴承的承载力和刚度越小;主轴转速和供气压力增加,承载力和刚度均提升明显;螺旋槽宽度增加,轴承的承载力和刚度先增大后减小;狭缝厚度增大,轴承的承载力先增大后不变,刚度先增加后减小;狭缝深度提升,轴承的承载力减小,刚度先增大后减小。  相似文献   

7.
以狭缝节流动静压气体径向滑动轴承为研究对象,采用有限差分方法求解其可压缩气体润滑Reynolds方程,获得压力分布,进而获得轴承承载力、刚度、阻尼等表征滑动轴承静动态特性的参数,并分析偏心率、长径比、槽宽比等轴承的结构参数及供气压力和转速等工况对轴承动静态性能的影响规律。结果表明:在轴承其他参数确定的情况下,连续性狭缝轴承较非续性狭缝轴承具有更大的承载力和刚度;增大偏心率、长径比、供气压力和减小槽宽比均能增加轴承的承载力和刚度;大偏心率、高转速下轴承动压效应突出,可有效提高轴承的承载能力和稳定性能。  相似文献   

8.
设计一种新型径向槽结构静压气体轴承,其周向和径向截面分别呈椭圆弧形和扇形。建立该径向槽结构静压气体轴承CFD模型,分析径向槽结构参数如深度、半径、数目、角度和试验参数供气压力,对静压气体轴承承载能力和刚度的影响。研究结果表明:静压气体轴承承载能力随槽结构深度、数目、角度和供气压力增加逐渐增大,随槽结构半径增加先增大后减小;槽结构数目和供气压力对其承载能力影响尤为显著;静压气体轴承径向槽结构参数和供气压力影响其刚度及最佳刚度对应的气膜厚度,其中槽结构半径、数目和供气压力对刚度值影响显著,槽结构角度和半径对最佳刚度对应的气膜厚度影响显著。由此可见,径向槽结构参数显著影响静压气体轴承的承载能力和刚度。  相似文献   

9.
设计带人字槽和轴向微通槽的动静压气体轴承,运用FLUENT对其静态特性进行仿真分析,通过改变轴向微通槽深度、偏心率、气膜厚度、供气压力等参数,研究其对轴承刚度和承载能力的影响。结果表明:其他条件不变,偏心率越大,轴承刚度越小、承载能力越大;人字槽可以提升气体轴承的承载能力和刚度,主轴转速越快,动压效应越强,轴承刚度和承载能力越大;随微通槽深度增加,轴承刚度先增大后保持稳定,轴承承载能力先增大后减小,因此当微通槽深度过大时,轴承刚度变化不大,但轴承承载能力会减小。  相似文献   

10.
以半球面螺旋槽动静压气体轴承为研究对象,建立供气切向角可变的半球面动静压气体轴承润滑分析数学模型。在广义坐标系下对模型进行保角变换和斜坐标变换,结合导数积分法和有限差分法建立气膜稳态压力控制方程的差分表达式后进行求解域网格划分,并编程数值计算稳态气膜厚度和压力分布;利用Simpson公式对气膜周向与径向压力进行积分,得到气体轴承的稳态承载力;在不同偏心率和转速下研究了不同轴承参数(节流孔数和分布、供气压力、供气切向角)对轴承稳态承载力的影响规律。  相似文献   

11.
为研究螺旋槽动压径向气体轴承承载特性,运用SolidWorks软件建立其物理模型。基于气体润滑基本方程Navier-Stokes方程,推导出可压缩非定常雷诺方程式。应用CFD技术和流体动力学Fluent软件对气体润滑基本方程Navier-Stokes方程直接求解,得到轴承在不同转速条件下的压力分布,以及轴承承载能力随螺旋槽动压径向轴承结构参数和运行参数的变化规律。结果表明;螺旋槽气体动压轴承在偏心方向气膜厚度最小,压力相对其他区域较大,随着转速的提高,轴承的动压效应更加显著,使得最大压力值逐渐增大;随着槽长、槽深比、槽数等结构参数的增加,以及偏心率、转速等运行参数的增加,轴承承载能力增大;而随着半径间隙的增大承载力减小。研究结果为螺旋槽动压径向气体轴承的设计及优化提供理论依据。  相似文献   

12.
以螺旋槽小孔节流动静压气体轴承为研究对象,运用变分法求解雷诺方程,利用Fluent软件对轴承静态特性进行仿真分析,研究供气压力、偏心率、转速以及节流孔直径、螺旋槽宽度和深度对轴承静态特性的影响规律。结果表明:相同偏心率下,随供气压力的升高,轴承静态特性增强;相同供气压力下,偏心率越大,承载能力越高,刚度越小;螺旋槽能够显著提高轴承静态特性,且转速越大,螺旋槽对轴承的动压效应越好;保证其他结构参数不变,轴承静态特性随螺旋槽宽度的增加先增大后减小,螺旋槽深度和节流孔直径越小越有利。  相似文献   

13.
Steady state and dynamic characteristics of axial grooved journal bearings   总被引:3,自引:0,他引:3  
The steady state and dynamic characteristics including whirl instability of oil journal bearings with single axial groove located at the top of the bearing and then at some angular interval from the top from which oil is supplied at constant pressure are obtained theoretically. The Reynolds equation is solved numerically by finite difference method satisfying the appropriate boundary conditions. The dynamic behaviour in terms of stiffness and damping coefficients of fluid film and stability are found using a first-order perturbation method for each location of the groove. It has been shown that both load capacity, end flow is maximum when the feeding groove is at 12° location and thereafter the load capacity falls, stability improves for smaller groove angle and groove length at higher value of eccentricity ratio and speed. The stiffness and damping coefficient magnitude is found to be higher for the bearing with smaller groove angle and groove length, the difference between the hydrodynamic and hydrostatic load increases at 12° groove location.  相似文献   

14.
针对柱面螺旋槽干气密封中的单列螺旋槽结构特点,建立螺旋槽浮环气膜密封的数学分析模型。基于中心差分法和Newton-Raphson迭代法,进行压力控制雷诺方程和气膜厚度方程的求解,得到压力和气膜厚度分布及不同操作参数下柱面单列螺旋槽气膜的泄漏量,并分析工况参数对柱面螺旋槽稳态性能的影响。结果表明:泄漏量是随着偏心率和压力的增加而升高;当偏心率一定时,转速的增加,导致泄漏量下降;当转速一定时,压力的上升导致泄漏量的急剧上升,近乎线性分布。试验结果与理论分析结果相吻合,验证了理论模型和计算方法的正确性。  相似文献   

15.
以具有螺旋槽和双向微通槽结构的动静压气体轴承为研究对象,用ANSYS中的Fluent对轴承静态特性进行仿真分析,通过改变螺旋槽和双向微通槽的宽度、深度,研究气膜厚度、主轴转速、偏心率、供气压力等参数对轴承静态特性的影响.结果表明:相对于单向微通槽(轴向微通槽和周向微通槽)结构,采用双向微通槽结构的轴承的承载力和刚度最优...  相似文献   

16.
A spherical spiral groove gas bearing has the ability to not only support radial and axial loads simultaneously but also tolerate extensive misalignment. Thus, this bearing type is considered suitable as a supporting and lubrication component of inertial components such as gyroscopes in the fields of aerospace and navigation. In this study, we propose a numerical method for predicting static and dynamic characteristics and conduct a parametric analysis of an aerodynamic spherical bearing with rotating spiral grooves. The finite difference method and the perturbation method are used to calculate the Reynolds equation to obtain the force coefficients. Given the complicated groove distribution, as well as film discontinuity and compressibility, solving the equations numerically in the spherical coordinates system is difficult. Parameter transformation and oblique coordinate transformation are thus applied in this study to modify the Reynolds equation into the planar oblique coordinate system. An eight-point method is also utilized to deal with film thickness discontinuity. The predictions of this proposed method show good agreement with the available experimental data. Parametric studies on nominal clearance, eccentricity ratio, rotating speed, groove depth, groove angle, and perturbation frequency are then conducted to determine optimum design parameters. The results show that these factors significantly affect bearing characteristics in both the radial and axial directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号