首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
利用赣江流域6个气象站数据(1961年~2005年)和NCEP再分析资料,建立了气候要素的SDSM降尺度模型,并将模型应用于Can ESM2模式的RCP4. 5情景,得到了流域未来气温与降水的变化趋势。即SDSM降尺度模型对赣江流域气温的模拟效果较好,降水略差;赣江流域未来降水均呈增加的趋势,降水空间分布基本呈南低北高趋势;未来气温均呈增加的趋势,各时期最高气温稍大于基准期;各时期最低气温稍大于基准期;赣江流域未来不同季节的平均气温均大于基准期;赣江流域未来气温空间分布呈现南高北低,西高东低的趋势。  相似文献   

2.
《人民黄河》2014,(1):48-51
通过HadCM3降尺度数据与HSPF水文模型耦合,探讨了未来气候变化情景下妫水河流域日最高、最低气温与降水量的变化情况。基于统计降尺度模型SDSM,将1961—2099年数据降尺度到各站点,生成了两种气候变化情景下的日最高气温(T max)、最低气温(T min)和降水量(P)数据。同时,构建了HSPF水文模型,分别用2005—2006年、2007—2008年数据进行了有效率定和验证,模拟了该流域在未来气候变化下的水文响应。结果表明:妫水河流域未来90 a的气温总体呈升高趋势,而降水量和地表流量呈减小趋势;高温室气体排放情景下日最高气温、最低气温、降水量和地表流量的10 a变化率分别为0.462℃、0.453℃、-0.010 mm、-0.051 m3/s,低温室气体排放情境下分别为0.263℃、0.264℃、-0.014 mm、-0.044 m3/s,流域干旱加剧的可能性进一步加大。  相似文献   

3.
杜懿 《人民珠江》2023,(3):40-50
为提高东江流域未来气候预估结果的可靠性,采用多种方法对CanESM2全球气候模式输出的气温和降水进行了统计降尺度处理。研究发现:SDSM模型和Delta方法分别对东江流域的气温和降水有着较好的降尺度模拟效果。气温上,相较于基准期(1961—2005年),至21世纪末期(2081—2100年),东江流域的日最低气温将升高2.26℃(RCP4.5)和3.65℃(RCP8.5),日平均气温将升高2.70℃(RCP4.5)和4.69℃(RCP8.5),日最高气温将升高2.79℃(RCP4.5)和4.95℃(RCP8.5),其中以夏季和冬季的增幅最为明显;降水上,未来东江流域的年降水量将保持着增加趋势,增速分别为16.4 mm/10a(RCP2.6)、8.7 mm/10a(RCP4.5)和25.4 mm/10a(RCP8.5),且以夏、秋两季增加最为显著。整体来看,未来东江流域在汛期出现极端高温和暴雨洪灾的风险将有所提高。  相似文献   

4.
为了解变化环境下的流域未来气候要素变化趋势,以抚河流域为研究对象,利用该流域两个气象站的1961—2005年水文逐日气温、降水和NCEP再分析数据等资料,建立了SDSM降尺度模型,并对未来的温度与降水研究。将模型应用于CanESM2模式下3种RCP排放情景,得到了流域未来气温与降水的变化趋势。结果表明SDSM模型对温度的模拟效果好于对降水的模拟效果,3种情景下未来温度总体呈现上升趋势,最低温度上升幅度高于平均温度和最高温度上升幅度;各情景下增温幅度2080s2050s2020s,2080s平均增温3.0℃;未来降水总体表现为减少趋势,局部表现为震荡趋势,减少主要集中在夏、秋季,其中5-6月降水减少量普遍较大,在30mm以上,而冬季降水量增幅在50~90mm;总体来说,抚河流域未来气温将持续上升,降水量呈现下降趋势,干旱形势严峻。  相似文献   

5.
利用景德镇气象站1961-2001年的实测降水、气温数据以及NCEP再分析数据,建立饶河流域降水、气温的SDSM统计降尺度模型;根据IPCC AR4排放情景特别报告中的A2和B2情景,对HADCM3输出数据进行降尺度处理,预测饶河流域未来时段(2010-2099年)的降水、气温变化情况;与新安江模型进行耦合,得到未来时段饶河流域的水资源量。结果表明:饶河流域未来水资源量持续减少,且A2情景比B2情景的降幅更大,至2080s时期(2070-2099年)昌江支流最大降幅可达31.01%。  相似文献   

6.
疏勒河流域属于气候变化敏感区和生态脆弱区,开展该流域未来气候变化研究,对于水资源合理利用及生态环境保护具有重要意义。为预估该流域的未来气候变化,采用SDSM(statistical downscaling model)模型,根据6个地面气象站41年(1961—2001年)的观测数据、NCEP数据和Had CM3模式模拟数据开展未来气温和降水降尺度研究。结果表明:SDSM对气温的月值模拟精度较高,各站月平均气温纳什效率系数均在0.98以上;SDSM对降水的月值模拟值较实测值整体偏高,模拟效果最好的托勒站月累计降水的纳什效率系数达到0.6。SDSM能较好地模拟气温的年际变化,模拟的年际变化趋势与实测值相差不大;但SDSM对降水的年际变化模拟较差,一些站点的变化趋势方向相反,趋势模拟最好的站点为托勒站和瓜州站。根据SDSM预估结果,与1961—2001年平均值相比,2020—2039年各站点的平均气温均有所升高,A2情景下升幅为(0.8~1.9)℃,B2情景下升幅为(1~2)℃;降水在A2和B2情景下差别不大,其中托勒站减少约54 mm,马鬃山站增加6 mm。研究发现,除托勒站外,疏勒河流域与预报变量相关性最高的预报因子并不在站点所在网格,而是其东侧网格,其原因有待进一步研究。  相似文献   

7.
以开都河流域及周边4个气象站点1961—2000年的日降水、日最高气温和日最低气温及NCEP再分析数据为基础,采用ASD(Automated Statistical Downscaling)统计降尺度模型,对Had CM3模式下A2、B2和A1B 3种气候情景进行降尺度,获得流域未来气候情景。研究结果表明:(1)ASD模型选定的预报因子能较好地解释最高温和最低温,但对降水的模拟效果相对较差。验证期,对降水和气温各5个指标的RMSE分析显示RMSE值均较小,ASD模型在研究区具有一定的适用性;(2)未来3种情景下,相较基准期,降水年变化呈先下降后上升趋势,最高和最低温年变化则持续保持上升趋势,未来山区气温变化较大,平原区降水变化大;降水年内变化存在季节分配不均状况,5月增加最多,7月减少最多。最高和最低温变化则以夏季增温最多、冬季次之,秋季降温最多、春季次之为特点。相比较,A2(高排)情景下降水、气温变化比B2(低排)A1B(中排)情景下更为明显。  相似文献   

8.
统计降尺度方法对黄河上游流域气象要素模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
将CMIP5模式的输出作为降尺度的输入来预估区域性气候的研究较少,本文使用CMIP5中精度较高的Can ESM2模式下的RCP4.5情景(中等温室气体排放)对黄河上游流域未来气象要素进行预估。利用黄河上游流域(上诠站以上)14个气象站点1967-2010年的逐月降水、气温和NCEP再分析资料,选取拟合度、均值相对误差、标准差相对误差作为评价指标,利用逐步回归算法筛选22个预报因子,建立了月资料序列的统计降尺度模型,并将模型应用于CMIP5中Can ESM2模式下RCP4.5情景,产生了未来气候要素的变化情景。结果表明:该模型对降水的模拟效果好于对气温的模拟。  相似文献   

9.
基于1954—2006年太湖流域6个气象站点的降水、气温资料,探讨了1954年以来太湖流域的气候变化问题,并同时应用统计降尺度模型SDSM和动力降尺度模型PRECIS,对太湖流域的日降水量和日最高、最低气温进行降尺度处理,建立未来2021—2050年的气候变化情景。结果表明:20世纪90年代以来,太湖流域发生了突变式增温,冬、春季节尤为显著;太湖流域降水变化相对较复杂,Mann Kendall法检测到太湖流域年降水量呈振荡性周期变化,并在1980年和2003年发生突变,而Pettitt方法没有检测出太湖流域年降水量的突变。两种降尺度方法模拟的未来时期日最高、最低气温季节和年的变化情景增幅总体上基本一致,均呈显著增加趋势,与Mann Kendall趋势分析结果一致,高排放情景A2下模拟生成的情景增温幅度较低排放情景B2大,最高气温增加幅度比最低气温明显。降水变化情景差异较大,SDSM模拟的未来时期降水并无明显变化趋势,而PRECIS模拟结果与趋势检验结果较为一致,即未来降水增加趋势明显,增幅较大,总体上全流域年降水量呈增加趋势,并且在未来一段时间内仍将持续增加。  相似文献   

10.
通过耦合SDSM统计降尺度模型和SWAT水文模型,探讨气候变化下东江流域的未来气候及其径流响应。首先基于SDSM模型,将2011—2099年HadCM3模式下A2和B2两种情景数据降尺度到东江流域各站点,生成未来气候要素(气温和降水);然后建立适用于东江流域的SWAT模型,并模拟该流域未来气候变化下的径流响应。结果表明:未来东江流域的气温、降水量和径流量均呈增加趋势;且A2情景下各气候水文要素的增加速度比B2情景下更快。研究结果可为东江流域的流域综合管理和水资源的可持续利用提供一定的科学依据。  相似文献   

11.
多模式下泾河上游流域未来降水变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用站点实测资料、GCMs 月数据对 GCMs 进行秩评分评估排序, 从 21 种 GCMs 模式优选出的 6 种 GCM模式的日数据、6 种 GCM 集成的气候模式、站点实测资料和 NCEP 再分析资料构建统计降尺度模型 SDSM, 预估泾河上游流域的未来降水变化。结果表明: 构建的降尺度模型对降水模拟较为可靠, 率定期各模式决定系数 R2 为 0.228~ 0.324, 标准误差为 0.354~ 0.450, 率定期和验证期模拟月均降水与实测值年内分布相近。在降尺度性能评价中集成模式表现最好。在 RCP 4.5 情景下, 泾河上游流域未来降水大多数模式和集成模式呈增加趋势, 到 2030 年泾河上游流域降水量将增加 4.8% , 且当地的春季雨量会增加, 夏季雨量会减少。  相似文献   

12.
为了预测流域未来径流演变趋势,通过主分量分析、降尺度模型和SWAT模型,预测分析了流域在大气环流模型(GCMs)A2/B2气候情景下2010—2099年的日最高最低气温、日降水和月径流量。主分量分析提取大尺度下气候预测因子的主成分,降尺度模型利用提取的主成分预测站点的最高最低气温和降水,SWAT模型利用预测的站点数据计算未来径流量。结果表明,A2/B2两种气候情景下流域未来气温呈波动上升趋势,降水、径流均呈波动下降趋势,其中B2情景变化幅度大于A2情景。  相似文献   

13.
全球气候变暖对陆地水循环会产生重大影响,统计降尺度方法是解决大尺度气候信息和小尺度水文响应的空间尺度不匹配问题的有效方法之一。文章采用SPEI指数与SDSM(Statistical Down-Scaling Model)方法,进行流域气候变化特征量的降尺度研究。结果表明:近50 a来,塔里木河流域SPEI指数呈显著上升趋势并在1986年发生突变;博斯腾湖水位变化与流域SPEI指数变化具有一致性,湖水位在1955—1986年以下降为主,1987—2002年以上升为主;SDSM模型的气温模拟能力较好,对日降水的模拟值偏小,未来日均、日最高气温在A2、B2两种情景下均呈上升趋势,日最低气温在B2情景下呈下降趋势;2种情景下的年降水量在2020年和2030年均呈下降趋势;在A2情景下,开都河出山口日径流量呈下降趋势;在B2情景下,日径流量在2010年时段呈增加趋势,在2020年和2030年呈持续下降趋势。  相似文献   

14.
文章采用统计降尺度模型SDSM,在东辽河流域建立大气环流因子与站点气候要素数据序列之间的统计关系,将GCM输出的未来气候情景降尺度到气象站点,生成各站点未来气候要素序列,分析东辽河流域未来日平均气温、日最高和最低气温、日降雨量的长期变化趋势,为进一步研究未来气候变化情景下东辽河流域的水资源及水质状况提供研究基础。  相似文献   

15.
利用美国环境预报中心(NCEP)的全球再分析资料和钱塘江流域6个气象站40多年的观测资料,建立了钱塘江流域统计降尺度模型。然后将IPCC AR5提供的大气环流模式Had GEM2-CC在RCP4.5情景下的结果输入统计降尺度模型,得到流域未来几十年的月平均降水情况。结果表明,海平面气压、地面气温、500 h Pa、850 h Pa位势高度场和500 h Pa、850 h Pa比湿这6个因子与降水有较为密切的联系,并且区域降水特征与当地地理位置、地质地貌等特征有明显关系。钱塘江流域未来几十年的年降水量呈现波动增加趋势,各站点年平均统计降水量增加速率为每年0.216 mm。  相似文献   

16.
极端气候事件会对陆地生态系统服务功能以及人类社会生活造成严重影响。针对GFDL、FGOALS和CCSM4这3种CMIP5气候模式,对RCP2.6、RCP4.5、RCP8.5未来情景下的黄河流域极端气候时空变化特征进行研究。结果表明:RCP2.6、RCP4.5、RCP8.5情景下流域日最高气温的上升速率分别为0.052、0.170、0.470℃/10 a,日最低气温的上升速率分别为0.029、0.170、0.460℃/10 a。日最高气温和日最低气温的空间分布规律呈现出一致性,从黄河上游河源区向中下游呈上升趋势。未来情景下黄河流域整体年降水量呈弱增加趋势,到21世纪后期,高温室气体排放情景下年降水量的增幅变大。  相似文献   

17.
基于山美水库流域1991—2010的实测气象数据,选取CMIP5中2个气候模式(HadGEM2-ES、NoerESM1-M)和2种典型浓度路径(RCP4.5、RCP8.5),对21世纪近期(2031—2050年)、中期(2051—2070年)、远期(2071—2090年)3个时期的日降水、气温数据进行统计降尺度处理;在此基础上,利用SWAT模型对山美水库流域基准期和未来3个时期的蓝水、绿水资源的时空分布特征进行模拟,评估流域未来60年气候变化对蓝绿水资源的影响。结果表明:山美水库流域未来60年预估年均降水量变化幅度为-0.43%~7.16%,平均气温增加约1.72~5.43℃,相较基准期,未来2个气候模式在2种RCP浓度路径下的蓝水资源量约减少12.81%~35.28%,绿水资源量上升约28.45%~36.12%;不同气候情景下流域蓝水、绿水资源变化率呈现出一定的相似性,上游地区均大于下游地区;降雨是蓝水资源时空分布的关键,而农用地分布则直接影响绿水资源的空间分异特征。  相似文献   

18.
陈浩  杨涛  胡高辉  王思媛 《人民长江》2016,47(18):31-34
为了研究气候变化对水库水面蒸发的影响,以叶尔羌河流域为研究对象,选取气温、相对湿度以及风速作为主要气候影响因子,基于人工神经网络构建统计降尺度模型。对研究区在全球气候模式BCC-CSM1.1三种情景(RCP2.6,RCP4.5,RCP8.5)下2020s、2050s、2080s时段内的蒸发量进行了预测。结果表明:叶尔羌流域水库的未来蒸发量总体呈增加态势,蒸发量E_(RCP2.6)E_(RCP4.5)E_(RCP8.5);2020s时段内3种情景模式下所选取水库年平均蒸发量为1 922.4~2 337.9 mm,蒸发渗漏损失率为35.17%~36.40%。  相似文献   

19.
基于CMIP5多模式集合和PDSI的黄河源区干旱时空特征分析   总被引:1,自引:0,他引:1  
针对黄河源区干旱情势逐年加剧的问题,采用CMIP5模型两种排放情景(RCP4.5和RCP8.5)下的8个模型的统计降尺度结果,运用最优赋权的多模式集合技术进行多模式集合优化,构建两种排放情景(RCP4.5、RCP8.5)的降水和气温数据集。在此基础上,构建黄河源区的VIC模型,结合帕尔默干旱指数(PDSI),分析黄河源区干旱的时空特征与变化趋势。结果表明,该流域在基准期(1961—1990年)的PDSI变化较为平稳,表现出微弱的增加趋势,未来时期(2021—2050年)PDSI则显著增加。在1961—1990年,黄河源区大多数地区干旱发生的频次在10次左右,平均干旱历时在4~10个月,平均烈度为6~24。在未来时期两种情景下,干旱的平均历时和平均烈度相较于基准期有所减少,且RCP8.5情景下的变幅明显高于RCP4.5。  相似文献   

20.
基于模式集成的松花江流域气候模拟预估   总被引:1,自引:0,他引:1  
以松花江流域为研究对象,采用CMIP5已发布的9个气候模式,模拟1951年~2000年历史降水和气温的月数据,对比实测资料运用3项数理统计指标评估模式的模拟性能;各模式降尺度后应用到4种集成方法。模拟结果表明,Can ESM2和MPI-ESM-MR模式模拟效果较好,多元回归集成表现最佳。利用优选的2个模式方法预估流域下游佳木斯站在RCP4. 5气候情景下未来逐月的降水和气温,并以预估的降水气温为因子构建线性回归模型计算流域未来径流的月变化过程。预估径流结果可为水资源管理及洪旱防治提供数据参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号