共查询到20条相似文献,搜索用时 51 毫秒
1.
组合偏最小二乘回归方法在近红外光谱定量分析中的应用 总被引:3,自引:1,他引:3
针对近红外光谱数据局部效应显著,变量个数多,彼此间常存在严重的复共线性,并多与样品组分含量呈非线性关系,构建一种组合非线性偏最小二乘回归(E-S-QPLSR)方法。它采用无重复采样技术(subag-ging),从训练样本中生成若干子样,然后每个子样通过二次多项式偏最小二乘回归(QPLSR),建立其子模型,并实现对训练样本因变量的定量预测,再将它们交由线性PLS算法用于计算各子模型的组合权系数。将该法应用于80个玉米样品的水组分含量与其近红外光谱的定量关系建模,效果良好,显示出很强的学习能力,所建模型的预报性能也优于其它方法。 相似文献
2.
偏最小二乘近红外光谱法测定瘦肉脂肪酸组成的研究 总被引:2,自引:0,他引:2
利用偏最小二乘将瘦肉的近红外光谱数据分别与其棕榈酸、棕榈油酸、硬脂酸、油酸、亚油酸含量建立校正模型,并用交互校验和外部检验来考查模型的可靠性.各脂肪酸模型的校正相关系数分别为0.9998、0.9844、0.9963、0.9754、0.9969,均方估计残差(RMSEC)分别为0.0231、0.0485、0.111、0.373、0.311,交互校验均方残差(RMSECV)分别为0.509、0.115、0.225、0.848、0.649.应用所建立的各脂肪酸近红外模型对瘦肉脂肪酸组成进行预测,并对各脂肪酸的预测值与气相色谱法测定值进行配对t-检验,结果表明两者差异均不显著(p>0.05). 相似文献
3.
4.
应用近红外光谱和偏最小二乘回归法预测玉米中淀粉含量 总被引:1,自引:0,他引:1
以普通玉米籽粒为试验材料,应用偏最小二乘回归法建立了基于近红外光谱数据的测定玉米籽粒中淀粉含量的校正模型。校正模型的校正误差(RMSEC)、交叉检验误差(RMSECV)和预测误差(RMSEP)分别#30.31%、0.42%和0.29%,校正数据集和独立的检验数据集的预测值与实际测定值之间的相关系数分别达到0.9255和0.9310,表明所建立的校正模型具有较高的预测精度和较好的推广性,为玉米籽粒中淀粉含量的快速、无损测定提供了新的途径: 相似文献
5.
6.
在生物燃气生产过程中,玉米秸秆中的木质纤维素(纤维素、半纤维素和木质素)成分含量对厌氧发酵性能具有重要影响。针对传统方法测定本质纤维素的耗时、成本高等问题,本研究分析了近红外光谱(NIRS)结合化学计量学进行玉米秸秆中木质纤维素含量快速检测的可行性。为提高NIRS模型的检测精度和效率,将遗传模拟退火算法(GSA)、区间偏最小二乘法(iPLS)和支持向量机(SVM)相结合,构建遗传模拟退火区间支持向量机(GSA-iSVM)进行NIRS特征谱区和SVM参数的同步优化,并与反向区间偏最小二乘法(BiPLS)、遗传模拟退火区间偏最小二乘法(GSA-iPLS)的优选特征谱区的建模性能进行对比,确定基于GSA-iSVM建立的纤维素和木质素校正模型性能最佳,基于GSA-iPLS建立的半纤维素校正模型性能最佳。纤维素、半纤维素和木质素最佳校正模型验证集的预测决定系数(Rp2)分别为0.910、 0.990和0.939,预测均方根误差(RMSEP)分别为0.881%、 0.707%和0.249%,剩余预测偏差(RPD)分别为3.283、 10.235和4.27... 相似文献
7.
重整汽油近红外光谱的稳健偏最小二乘解析 总被引:1,自引:0,他引:1
近红外光谱(NIR)光谱复杂,组分间光谱重叠严重,目前,多元线性回归(MultipleLinearRe gression,MLR)和偏最小二乘法(PartialLeast squares,PLS)是近红外光谱分析中使用最多和效果较好的方法[1]。稳健偏最小二乘(RobustPartialLeast Squares,RPLS)是由稳健统计学构造的具有稳健性能的多元校正方法。当化学测量中引入随机异常点或误差的内在分布偏离正态分布时,它仍能给予接近最优性能的校正,确保分析结果的准确性,是消除奇异点的非常有效的方法[2-4],… 相似文献
8.
半监督学习方法可以充分利用大量未标注样本来弥补已标注样本的不足,针对应用近红外光谱建立农产品等复杂体系的分析模型中,存在获得大量精确标注样本较困难,而使用少量标注样本或大量未准确标注样品建模结果不理想的问题,基于半监督自训练理念,提出半监督偏最小二乘(Semi supervised-partial least squares,SS-PLS)方法优化模型。本研究以全国不同产地、不同等级的211份原料烟叶近红外光谱及其对应感官评价数据为例,应用SS-PLS方法优化模型,模型性能较原始模型有显著提高,优化后SS-PLS方法模型的决定系数(R2)达90%左右,建模标定值分布标准差与拟合值标准差的比值(Ratio of Performance to Deviation,RPD)达3.0以上,模型内部交叉验证及预测标准差(Standard error of cross validation SECV以及Standard Error of Prediction,SEP)值达1.0以下;并将原始感官评价数据与SS-PLS优化后的数据,按照固定阈值划分为优、中、差三个等级,应用基于主成分及FISHER准则的投影方法(Projection Model based on Principal Component and Fisher Criterion,PPF)分析得到的结果表明,SS-PLS优化后的分类结果也显著好于原始感官评价数据。SS-PLS可解决使用小样品集建模的数据代表性问题,在获得大量精确标注样本较困难情况下,为建立近红外光谱分析模型提供了一种新的化学计量学方法。 相似文献
10.
以玉米中水分、蛋白质、脂肪和淀粉4种主要成分含量以及烟叶总植物碱的偏最小二乘近红外光谱(PLS-NIRs)模型传递为例,考察了模型中潜变量个数(nLVs)对模型传递误差的影响。研究发现,根据累积贡献率大于999%确定的玉米、烟叶样品PLS-NIRs模型的nLVs分别为1和13,nLVs=1时建立的玉米模型对两台从机样品4个成分的预测值和主机预测值的重现性指标均满足国标要求;nLVs=13时建立的烟叶总植物碱模型经分段直接校正(PDS)后,可使4台从机样品的平均相对预测误差(MRE)小于6%。采用留一交叉验证或四折交叉验证确定的玉米、烟叶PLS-NIRs模型的nLVs分别为5~10,16与19,在这些nLVs下建立的玉米PLS-NIRs模型对从机样品的预测误差显著增大,超过许可的误差范围,且模型即使经PDS校正后,从机样品预测值与主机样品预测值的重现性指标大多不满足国标要求;nLVs>13时所建烟叶总植物碱PLS-NIRs模型的转移误差随nLVs增大而增大,且PDS校正后不能保证模型对所有从机样品的MRE小于6%。根据累积贡献率大于99.9%或接近99.9%为准则选取nLVs,可有效避免过拟合,提高NIRs模型的传递性能。 相似文献
11.
Textile products must be marked by fabric type and composition on the label and cotton is by far the most important fiber in the industry and often needs fast quantitative analysis. The corresponding standard methods are very time-consuming and labor-intensive. The work focuses on exploring the feasibility of combining near-infrared (NIR) spectroscopy and interval-based partial least squares (iPLS) for determining cotton content in textiles. Three types of partial least square (PLS)-based algorithms were used for experimental measurements. A total of 91 cloth samples with cotton content ranging from 0 to 100% (w/w) were collected and all compositions are commercially available on the market in China. In all cases, the original spectrum axis was split into 20 subintervals. As a result, three final models, i.e., the iPLS model on a single subinterval, the backward interval partial least squares (biPLS) model on the region remaining six subintervals, and the moving window partial least squares (mwPLS) model with a window of 75 variables, achieved better results than the full-spectrum PLS model. Also, no obvious differences in performance were observed for the three models. Thus, either iPLS or mwPLS was preferred considering their simplicity, which suggested that iPLS and mwPLS combined with NIR technique may have potential for the rapid determination of the cotton content of textile products with comparable accuracy to standard procedures. In addition, this approach may have commercial and regulatory advantages that avoid labor-intensive and time-consuming chemical analysis. 相似文献
12.
蛋白质含量是评价鱼粉质量的重要指标,该文采用近红外(NIR)光谱分析技术结合特征筛选方法建立了鱼粉蛋白质含量的快速定量分析模型,并结合区间偏最小二乘(iPLS)和二进制变异策略的差分进化(DE)算法建立了区间偏最小二乘差分进化(iPLS-DE)的波长筛选优化模式,对鱼粉NIR光谱数据进行特征波长筛选。iPLS-DE通过调试iPLS中等分子区间的数量,优选出9个最优特征波段,再采用二进制变异策略的DE算法在最优特征波段内筛选离散特征波长组合,最后根据模型的评价指标确定iPLS-DE优选模型并与iPLS优选模型进行比较。结果表明,将鱼粉全谱等分为5个子区间时,iPLS-DE筛选出50个离散特征波长建立的优选模型对测试集样品的预测均方根误差和相对分析误差分别为1.033%和4.058,而iPLS优选模型对测试集样品的预测均方根误差和相对分析误差分别为1.131%和3.855。表明iPLS-DE方法能够有效地提高NIR光谱分析模型对鱼粉蛋白质定量检测的预测能力。 相似文献
13.
针对近红外光谱分析技术中分析对象非线性现象突出的情况,提出了一种新的模型计算方法——局部加权偏最小二乘法(LWPLS)。以安胎丸为研究对象,采用LWPLS算法进行其近红外定量模型的建立,并比较偏最小二乘法(PLS)与LWPLS两种算法建立定量模型的精度。结果测得两种算法建立的校正模型中,阿魏酸的模型相关系数(R2)分别为0.7855、0.9719,预测误差均方根(RMSEP)分别为0.1266、0.0438,相对预测误差(RE)分别为12.66%、9.18%;洋川芎内酯A的R2分别为0.8864、0.9649,RMSEP分别为0.1148、0.0771,RE分别为14.01%、7.81%,显示LWPLS算法建立的模型精度更高。研究表明,采用LWPLS算法可提高安胎丸定量模型的准确性,具有可推广性和广泛的应用性。 相似文献
14.
《应用化学》2014,31(05):613
Abstract: A rapid determination method of free toluene diisocyanante(TDI) content in coating solidifying agent was developed by near infrared spectroscopy(NIR), with GC analysis values as the reference. NIR transmission spectrum of the solidifying agent was first collected. Among the 120 samples analyzed, 109 representative samples were selected to establish TDI content of predictive models with the NIR wave numbers between 7320~7250 cm-1 and 8485~8370 cm-1, by the partial least squares(PLS) and fully-interactive authentication methods. The results showed that the free TDI contents in the solidifying agent of and the near-infrared spectra correlate very well. The calibration set RMSEC was 0.0815 and validation set RMSEP was 0.0715. This proofed the performance of the working model, and indicated that NIR spectroscopy can be used for fast and accurate determination of TDI content in solidifying agent samples. 相似文献
15.
近红外光谱法快速测定涂料固化剂中游离甲苯二异氰酸酯含量 总被引:1,自引:0,他引:1
用气相色谱分析值为参照,采用近红外透射光谱(NIR)技术采集相应样品的NIR光谱,研究了涂料固化剂中游离甲苯二异氰酸酯(TDI)含量的快速测定分析方法。 并从120个固化剂样品中挑选出109个代表性的样品建模,选择7320~7250 cm-1和8485~8370 cm-1波段区间,用偏最小二乘法(PLS)和完全交互验证方式建立TDI含量的预测模型。 结果表明,固化剂中游离甲苯二异氰酸酯含量和近红外光谱之间存在较好的相关性,其预测模型的校正集均方差(RMSEC)为0.0815,验证集均方差(RMSEP)为0.0715,模型性能良好。 近红外光谱法可快速准确测定游离甲苯二异氰酸酯(TDI)含量,用于固化剂样品快速分析。 相似文献
16.
Claudia Scappaticci Stella Spera Alessandra Biancolillo Federico Marini 《Molecules (Basel, Switzerland)》2022,27(19)
In the present work, a fast, relatively cheap, and green analytical strategy to identify and quantify the fraudulent (or voluntary) addition of a drug (alprazolam, the API of Xanax®) to an alcoholic drink of large consumption, namely gin and tonic, was developed using coupling near-infrared spectroscopy (NIR) and chemometrics. The approach used was both qualitative and quantitative as models were built that would allow for highlighting the presence of alprazolam with high accuracy, and to quantify its concentration with, in many cases, an acceptable error. Classification models built using partial least squares discriminant analysis (PLS-DA) allowed for identifying whether a drink was spiked or not with the drug, with a prediction accuracy in the validation phase often higher than 90%. On the other hand, calibration models established through the use of partial least squares (PLS) regression allowed for quantifying the drug added with errors of the order of 2–5 mg/L. 相似文献
17.
Jiyong Shi Xuetao Hu Xiaobo Zou Jiewen Zhao Wen Zhang Xiaowei Huang Yaodi Zhu Zhihua Li Yiwei Xu 《Journal of Chemometrics》2016,30(8):442-450
A new heuristic and parallel simulated annealing algorithm was proposed for variable selection in near‐infrared spectroscopy analysis. The algorithm employs a parallel mechanism to enhance the search efficiency, a heuristic mechanism to generate high‐quality candidate solutions, and the concept of Metropolis criterion to estimate accuracy of the candidate solutions. Several near‐infrared datasets have been evaluated under the proposed new algorithm, with partial least squares leading to improved analytical figures of merit upon wavelength selection. Improved robust and predictive regression models were obtained by the new algorithm. The method could also be helpful in other chemometric activities such as classification or quantitative structure‐activity relationship problems. 相似文献
18.
近红外光谱快速测定高浓度烟酰胺 总被引:2,自引:0,他引:2
利用烟酰胺在乙醇溶液中波段范围为9001-8060cm^-1和7443-7144cm^-1的近红外一阶导数吸收光谱,经过中心化、矢量归一化预处理,应用偏最小二乘法回归来消除溶剂乙醇的近红外吸收干扰,建立了快速高浓度烟酰胺的方法。54个样本作为校正集,PLS最佳回归因子数为4时,决定系数等于0.997;线性范围为0.13-0.70mol/L。本方法应用于9个待测样品,预测相对偏差小于2.9%,结果令人满意,同时还讨论了一些影响回归精度的因素。 相似文献
19.
20.
《Analytical letters》2012,45(18):3383-3391
Abstract This paper developed a multivariate method of analysis of quercetin in Ginkgo biloba leaf extracts, based on reflectance NIR measurements and partial least squares regression. In order to give a better correlation with the results obtained by HPLC, multiplicative scatter correction (MSC) was utilized to correct scattering effect and interval partial least squares (iPLS) to select optimum wavelength region. In general, good calibration statistics were obtained for the prediction of quercetin content, as demonstrated by some figures of merit, namely linearity, repeatability, and accuracy. And the iPLS model was more reliable than the full model. 相似文献