首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Hg(II) and Cd(II) homoleptic complexes with mixed donor (O,S and N,S) macrocycles is reported. The macrocyclic oxa thiacrowns 9S2O (1-oxa-4,7-dithiacyclononane) and 18S4O2 (1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane) bind to Hg(II) to form distorted tetrahedral S4 geometries without coordination of the oxygen atoms. In contrast, the two macrocycles coordinate to Cd(II) through all ligand donors to form S4O2 environments. We also report the structure of bis(9N2S (1,4-diaza-7-thiacyclononane))cadmium(II), [Cd(9N2S)2]2+ which shows octahedral coordination in a trans N4S2 environment. Furthermore, two new homoleptic Cd(II) complexes with the related hexadentate macrocycles 18N6 (1,4,7,10,13,16-hexaazacyclooctadecane) and 18S6 (1,4,7,10,13,16-hexathiayclooctadecane) are described. Among the Cd(II) complexes, we highlight a trend in 113Cd NMR that shows progressive upfield chemical shifts as secondary amine donors replace thioether S donors.  相似文献   

2.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

3.
M(ADNU) 2 complexes [whereM=Cu(II), Ni(II), Pd(II) and Pt(II); HADNU=6-amino-1,3-dimethyl-5-nitroso-uracil], Co(ADNU)3·5H2O, Pt(ADNU)2Cl2·0.5H2O, Pd(ADU)2 and Pt(ADU)2Cl2 (where HADU=1,3-dimethyl violuric acid) have been synthesized and characterized by elemental analysis, IR, magnetic measurements and thermal analysis (TG and DSC). All the isolated complexes of formulasM(ADNU)2 orM(ADU)2 show a square planar geometry, whereas the others are octahedral. Both ligands coordinate in bidentate form through the nitrogen and oxygen atoms of the 5-nitroso and 6-oxide groups.
Metall-Komplexe einiger 5-Nitrosopyrimidine
Zusammenfassung Komplexe des TypesM(ADNU)2 [M=Cu(II), Ni(II), Pd(II), Pt(II); HADNU=6-Amino-1,3-dimethyl-5-nitroso-uracil], Co(ADNU)3·5H2O, Pt(ADNU)2Cl2·0.5H2O, Pd(ADU)2 und Pt(ADU)2Cl2 (mit HADU=1,3-dimethylviolursäure) wurden synthetisiert und mittels Elementaranalysen, IR, magnetischen Messungen und Thermoanalyse (TG und DSC) charakterisiert. Alle isolierten Komplexe der allgemeinen FormelnM(ADNU)2 oderM(ADU)2 waren von quadratisch planarer Geometrie, während die anderen sich als octaedrisch erwiesen. Beide Liganden komplexieren zweizähnig über die Stickstoff- und Sauerstoffatome der 5-Nitroso- und 6-Oxo-Gruppen.
  相似文献   

4.
The mononuclear complexes of Zn(II), Cd(II) and Hg(II), [Zn(phen-dione)Cl2], [Cd(phen-dione)Cl2] and [Hg(phen-dione)Cl2], where phen-dione?=?1,10-phenanthroline-5,6-dione, have been synthesized and characterized by elemental analysis and IR, 1H?NMR and electronic absorption spectroscopies. The ν(C=O) of coordinated phen-dione ligands in these complexes shows that the phen-dione is not coordinated to metal ion from its C=O sites. Electronic spectra of the complexes show two absorption bands for intraligand transitions. These absorption bands show dependence on the dielectric constant of solvents. These complexes exhibit an intense fluorescence band around 545?nm in DMSO when the excitation wavelengths are 200?nm at room temperature.  相似文献   

5.
The synthesis and characterization of Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II) and Hg(II) complexes of isatin-3-oxime (H2OXI) are reported. Elemental analysis, infrared spectroscopy, thermal analysis and X-ray powder diffraction were used to characterize the complexes. The IR spectral data show that the ligand behaves in a monodentate or a bidentate manner in the different complexes. The compositions of the prepared complexes were Ag(HOXI), Hg(OXI) and M(HOXI)2 for M=Co(II), Ni(II), Cu(II), Zn(II) and Cd(II).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
New complexes of the formulae K3[RhL 3]·2 H2O, [PdL]·H2O and [M(LH2)Cl2] [whereM = Pd, Pt andLH2 = bis(o-aminobenzenesulfonyl)ethylenediamine] have been prepared and characterized by conductivity measurements, thermogravimetric analysis, X-ray powder patterns and IR, Ligand Field and1H-NMR spectroscopy.
Rhodium(III), Palladium(II)- und Platin(II)-Komplexe mit Bis(o-aminobenzolosulfonyl)ethylendiamin (Kurze Mitteilung)
Zusammenfassung Neue Komplexe der allgemeinen Formeln K3[RhL 3]·2H2O, [PdL]·H2O und [M(LH2)Cl2] mitM = Pd, Pt undLH2 = Bis(o-aminobenzolosulfonyl)ethylendiamin wurden dargestellt und mit Konduktionsmessungen, thermogravimetrischen Analysen, Röntgenstrukturanalysen, IR, Ligandfeld- und1H-NMR-Spektroskopie charakterisiert.
  相似文献   

7.
Some metal complexes of DL–methionine were prepared in aqueous medium and characterized by different physico-chemical methods. Methionine forms 1:2 complexes with metal, M(II). The general empirical formula of the complexes is proposed as [(C5H10NO2S)2MII]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). All the complexes are extremely stable in light and air and optically inactive. Magnetic susceptibility data of the complexes demonstrate that they are high spin paramagnetic complex except Zn(II), Cd(II) and Hg(II) complexes. The bonding pattern in the complexes are similar to each other as indicated by electronic absorption spectra and FTIR spectral analysis. The current potential data, peak separation (AE) and the peak current ratio (ipa/ipc) of the (Mn, Cu and Cd) complexes indicate that the charge transfer processes are irreversible, the systems are diffusion controlled and also adsorptive controlled. The charge transfer rate constant of metals in their complexes are less than those in their metal salts at identical experimental conditions due to the coordination of metal with methionine.  相似文献   

8.
Reaction of group 12 metal dihalides in ethanolic media with 2‐acetylpyridine 4N‐phenylthiosemicarbazone ( H4PL ) and 2‐acetylpyridine‐N‐oxide 4N‐phenylthiosemicarbazone ( H4PLO ) afforded the compounds [M(H4PL)X2] (X = Cl, Br, M = Zn, Cd, Hg; X = I, M = Zn, Cd) ( 1–8 ), [Hg(4PL)I]2 ( 9 ) and [M(H4PLO)X2] (X = Cl, Br, I, M = Zn, Cd, Hg) ( 10–18 ). H4PL , H4PLO and their complexes were characterized by elemental analysis and by IR and 1H and 13C NMR spectroscopy (and the cadmium complexes by 113Cd NMR spectroscopy), and H4PL , H4PLO , ( 5 · DMSO) and ( 9 ) were additionally studied by X‐ray diffraction. H4PL is N,N,S‐tridentate in all its complexes, including 9 , in which it is deprotonated, and H4PLO is in all cases O,N,S‐tridentate. In all the complexes, the metal atoms are pentacoordinate and the coordination polyhedra are redistorted tetragonal pyramids. In assays of antifungal activity against Aspergillus niger and Paecilomyces variotii, the only compound to show any activity was [Hg(H4PLO)I2] ( 18 ).  相似文献   

9.
Thermal decomposition of Ni(II), Pd(II), and Pt(II) complexes of N-pyrimidin-2ylthiourea (AllPmTu) have been studied by TG, DTG, and DTA and by electron impact (EI) mass spectra. The complexes have the molecular formulae as [Ni(AllPmTu)Cl2(H2O)], [Ni(AllPmTu)2Cl2(H2O)2], and [M(AllPmTu)Cl2], where M = PdII or PtII, and [Pt(AllPmTu)2]. The TG curves show that Ni(II) complexes decompose in three stages to yield NiO as a residue, while Pd(II) and Pt(II) decompose in two stages to yield MS residues. The initial mass losses correspond to elimination of allylamine for Pd(II) and Pt(II) complexes but, allyisothiocyanate for both Ni(II) complexes revealing that sulfur atom of thiourea part is involved in coordination to Pd(II) and Pt(II) but does not to Ni(II). Kinetic parameters (E #, n, ΔH #, ΔS #, ΔG #) of the decomposition stages are determined and correlated with bonding and structural properties of the complexes. The EI mass spectra of the complexes show fragments corresponding to the evolved and intermediate species.  相似文献   

10.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

11.
The competition between tetra-, penta-, and hexacoordination with the MN2O2, MN2O2X, and MN2O2X2 (X = S, Se) coordination nodes, respectively, during the formation of bisligand Zn(II), Cd(II), and Hg(II) complexes with bi- and tridentate heterocyclic azomethines has been studied by means of quantumchemical DFT simulation of the complex formation and further stereoisomerization. It has been found that pentacoordination was favorable for the Cd(II) and Hg(II) complexes, whereas the Zn(II) complexes are tetracoordinate.  相似文献   

12.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

13.
Zn (II), Cd (II), Hg (II) and U (VI)O22+ complexes of water‐soluble thiosemicarbazone ligand (NaH3PyTSC) have been prepared and characterized using various techniques. Fourier transform‐infrared (FT‐IR) demonstrated that NaH3PyTSC ligand behaves as a binegative NOS tridentate in [Hg(H2PyTSC)(H2O)]2 and [UO2(H2PyTSC)(H2O)]2 complexes via the deprotonated SH, (C=N)az groups from one molecule and SO3? group from another molecule, while it behaves as a binegative NNSO tetradentate in [Cd(H2PyTSC)(H2O)2]2 complex through the deprotonated SH group, the SO3? group and the nitrogen of both the (C=N)az and (C=N)py. Finally, it behaves as a binegative OO bidentate in [Zn(H2PyTSC)(H2O)2]2·2H2O complex by the deprotonated OH group from one molecule and SO3? group from another ligand molecule. The spectral data suggest a tetrahedral coordination around Hg (II) and Zn (II) ions, and an octahedral coordination around Cd (II) and U (VI)O22+ ions. The NaH3PyTSC ligand exhibited maximum luminescent intensity at 501 nm, while Zn (II), Cd (II) and Hg (II) chelates show emission bands at 459, 458 and 358 nm, respectively. Two comparable methods were used to estimate various thermodynamic parameters. Cyclic voltammetry has been studied for Cd (II) complex in solution. Different biological applications of the isolated complexes have been estimated. It was found that [Cd(H2PyTSC)(H2O)2]2 showed the most effective antioxidant and anticancer activity.  相似文献   

14.
The palladium(II) and platin(II) 1, 1‐dicyanoethylene‐2, 2‐dithiolates [(L–L)M{S2C=C(CN)2}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from[(L–L)MCl2] and K2[S2C=C(CN)2] or from [(PPh3)2M{S2C=C(CN)2}] and the bisphosphane. Moreover, [(dppe)Pt{S2C=C(CN)2}]was obtained from [(1, 5‐C8H12)Pt{S2C=C(CN)2}] and dppeby ligand exchange. The 1, 1‐dicyanoethylene‐2, 2‐diselenolates[(dppe)M{Se2C=C(CN)2}] (M = Pd, Pt) were prepared from[(dppe)MCl2] and K2[Se2C=C(CN)2]. The oxidation potentials of the square‐planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of [(dcpe)Pd(S2C=O)] with TCNE led to a ligand fragment exchange and gave the 1, 1‐dicyanoethylene‐2, 2‐dithiolate [(dcpe)Pd{S2C=C(CN)2}] in good yield.  相似文献   

15.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

16.

The novel transition metal saccharinate complexes of triethanolamine (TEA) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes of [M(TEA)2](SAC)2, where SAC is the saccharinate ion, while the Cu(II) complex is dimeric. The TEA ligand acts as a tridentate N,O,O'-donor ligand and one ethanol group is not involved in coordination. The SAC ion does not coordinate to the metal ions and is present as the counter-ion in the Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) complexes, but coordinates to the Cu(II) ion as a monodentate ligand. The crystal structures of the [Co(TEA)2](SAC)2 and [Cu2(μ-TEA)2(SAC)2]·2(CH3OH) complexes were determined by single crystal x-ray diffraction. The Co(II) ion has a distorted octahedral coordination by two TEA ligands. The Cu(II) complex crystallizes as a dimethanol solvate and has doubly alkoxo-bridged centrosymmetric dimeric molecules involving two tridentate triethanolaminate (deprotonated TEA) and two monodentate SAC ligands. The geometry of each Cu(II) ion is a distorted square pyramid. Both crystal structures are stabilized by hydrogen bonds to form a three-dimensional network.  相似文献   

17.
Sodium4-hydroxy-3-([2-picolinoylhydrazineylidene]methyl)benzenesulfonate (NaH2PH) was synthesized as a novel water-soluble ligand, by the condensation of picolinohydrazide with sodium 3-formyl-4-hydroxybenzenesulfonate. The (NaH2PH) ligand and its isolated Co (II), Fe (III), Hg (II), and Pd (II) complexes were analyzed by elemental analysis and characterized by spectroscopic (Fourier transform infrared spectroscopy, UV–visible, powder XRD, 1H NMR,13C NMR, MS) and magnetic measurements. By comparing IR spectra of both ligand and the metal complexes, one can assume that the (NaH2PH) ligand behaves as a bi-negative tetradentate (ONNO) in [Co (NaPH)(H2O)2].3H2O, and a mono-negative tridentate (ONO) in [Fe (NaPH)Cl2(H2O)] complex, whereas in [Hg2(NaPH)Cl2(H2O)] complex, (NaH2PH) coordinates as a bi-negative pentadentate (ONNNO) ligand via deprotonated OH group of phenolic ring (C=N)Py and (C=N*) coordinated to one of Hg (II) ion and the oxygen atom of enolic group and (C=N)az group with the another Hg (II) ion. Moreover, (NaH2PH) acts as bi-negative tridentate (ONO) ligand in [Pd (NaPH)(H2O)].2H2O complex. The geometries of complexes were suggested based on the UV–visible spectra, magnetic measurements and confirmed by applying discrete Fourier transform (DFT) optimization studies. The thermal fragmentation of both [Pd (NaPH)(H2O)].2H2O and [Co (NaPH)(H2O)2].3H2O complexes was performed, and the kinetic and thermodynamic parameters were computed using the Coats–Redfern and Horowitz–Metzger methods. The redox behavior of divalent ions of cobalt and mercury were discussed by the cyclic voltammetry technique in the presence and absence of (NaH2PH) ligand. Biological potencies of the ligand and its metal complexes were evaluated as antioxidants (ABTS and DPPH), anticancer, DNA, and antimicrobial (Staphylococcus aureus and Bacillus subtilis as Gram (+) bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram (−) bacteria, and Candida albicans as fungi).  相似文献   

18.
Condensation derivatives of ethyl hydrazinoacetate with 2-formylpyridine and quinoline-2-carboxaldehyde were synthesized. Pd(II), Pt(II) and Cd(II) complexes with the 2-formylpyridine derivative and a Cd(II) complex with the quinoline-2-carboxaldehyde derivative were synthesized and characterized by spectroscopic techniques. In the complexes, both ligands are coordinated in neutral NN bidentate modes, while the remaining two coordination sites are occupied by chloride. All compounds showed biological activity when tested against Escherichia coli, Bacillus subtilis and Staphylococcus aureus.  相似文献   

19.
《中国化学会会志》2017,64(11):1303-1307
Four new complexes, namely Cd(II)(4'‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 (R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )), were synthesized and characterized by high‐resolution mass spectrometry, infrared (IR) spectroscopy, and elemental analysis. Complexes 2 and 4 were further characterized by single‐crystal X‐ray diffraction analysis, which showed that the Cd(II) ions in complexes 2 and 4 are both six‐coordinated with the N6 coordination sphere, displaying distorted octahedral geometries. The luminescence of complexes 1 – 4 was studied. Moreover, the photocatalytic properties of complexes 1 – 4 were investigated and compared with those of their parent complex Cd(II)(terpyridine)2(ClO4)2.  相似文献   

20.
The reactions of seven symmetrically alkylated tetradentate ligands 3,3′-bis(dipyrrolylmethenes) (H2L) with d-metal acetates (M(AcO)2) in DMF solutions at 298.15 K were studied by spectrophotometry. Helicands H2L were found to be structurally preorganized to form stable binuclear homoleptic two-helix helicates [M2L2] with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) acetates. The coordination of the ligands by the metal ions included consecutive stages of formation of the heteroleptic [M2L(AcO)2] and homoleptic [M2L2] complexes. The [M2L(AcO)2] complexes were spectrally revealed in solutions containing a ligand excess (c H 2 L / c M(AcO) 2 > 1). An increase in the salt concentration shifted the system of equilibria to the homoligand product [M2L2]. The thermodynamic constants of the reactions increased in the series of complexing agents: Cu(II) < Cd(II) < Hg(II) < Ni(II) < Co(II) < Zn(II). An analysis of the data on the thermodynamic constants of [M2L2] helicate formation in solutions and the earlier obtained results of the IR and 1H NMR studies of the hydrobromic salts of the ligands (H2L · 2HBr) showed that the key regularities of the influence of the structural factors on the coordination properties of the ligands were in an increase in the stability of the [M2L2] complexes with an increase in the basicity of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号