首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers.  相似文献   

2.
A dilute fiber suspension in a turbulent channel with a backward-facing step is investigated by means of Feature Tracking. Its combination with a phase-discrimination methodology, which is described in detail, allows simultaneous and separate measurement of carrier and dispersed phases velocity fields, the orientation and rotation rate of fibers as well as the fiber–fluid translational and rotational slip velocities. The patterns of fibers concentration, angular velocity and the probability distribution of fibers velocity appear to be dominated by the mechanical interactions with the wall and the local high shear rather than by near-wall turbulent structures. The translational slip velocity obtained from instantaneous data shows that fibers move faster than the surrounding fluid inside the buffer layer, the velocity gap reducing gradually when approaching the channel centerline. On the other hand, the rotational slip profile suggests a gradual decoupling of the translational and rotational dynamics. Downstream of the step, the excess of streamwise velocity displayed by fibers is still observed and extends in the free-shear region, whereas the rotation rate slip decreases at a relatively short distance from the step, as the effect of the wall presence fades away.  相似文献   

3.
Numerical calculations based on the Lattice-Boltzmann method were performed for a particle cluster consisting of a large spherical carrier particle covered with hundreds of small spherical drug particles. This cluster, fixed in space within a cubic computational domain, was exposed to turbulent plug airflow with predefined intensity. Such a situation is found in dry powder inhalers where carrier particles blended with fine drug powder are dispersed in a highly turbulent flow with the objective of detaching the drug powder for pulmonary delivery. Turbulence was generated by a digital filtering technique applied to the inflow velocity boundary condition. This technique was first validated by analysing the turbulence intensity at 15 fluid nodes along the stream-wise direction of the computational domain. The size ratio between the drug and carrier particle was 5 μ m/100 μ m, and the coverage degree of the carrier by the small particles was 50%, which is a typical value for carrier particle blending. The range of carrier particle Reynolds numbers considered was between 80 and 200, typical values found in inhaler devices. Exemplarily, at Re = 200 turbulence intensity was varied from 0.3% to 9.0%. The systematic increase of the mean flow (i.e. 80 < Re <200) resulted in varying turbulence intensities from 20 to 9%. These simulations provided the temporal evolution of the fluid dynamic forces on the drug particles in dependence of their angular position on the carrier in order to estimate the possibility of drug particle detachment. For turbulent conditions (i.e. Re = 200 and I = 9.0%) the maximum fluid forces on the drug particles were found to be about 10-times larger than found in laminar flow. The fluctuations in the forces were found to be higher than the flow velocity fluctuations due to the modification of the boundary layer around the cluster and instabilities triggered by the turbulent flow. There are three possibilities for detaching the drug powder, namely, through lift-off and sliding or rolling. Lift-off was found to be of minor importance due to the observed small normal fluid forces even at Re = 200 and I = 9.0%. The probability of sliding and rolling detachment in dependence of the angular position was estimated based on measured adhesion properties, i.e. van der Waals force, adhesion surface energy and friction coefficient. The remarkable rise of detachment probability for both effects due to the action of turbulence is an important finding of this study. In accordance with laminar flow, rolling detachment occurs before sliding, however in turbulent conditions over the entire carrier particle. The present studies improve the understanding of drug particle detachment from carrier particles in an inhaler device. The results will be the basis for developing Lagrangian detachment models that eventually should allow the optimisation of dry powder inhalators through computational fluid dynamics.  相似文献   

4.
Fiber suspension flow and fiber orientation through a parallel-plate channel were numerically simulated for fiber suspensions including continuously dispersed aspect ratios from 10 to 50. In the simulations, both the fiber–fiber and fiber–wall interactions were not taken into account. A statistical scheme that proceeds by evaluating the orientation evolution of a large number of fibers from the solution of the Jeffery equation along the streamlines was confirmed to be a very useful and feasible method to accurately analyze the orientation distribution of fibers with continuously dispersed aspect ratios. For monodisperse suspensions with small-aspect-ratio fibers, flip-over or oscillation phenomenon of the orientation ellipsoid caused the wavy patterns of the velocity profile and the streamlines as well as the abrupt and complex variation of the shear stress and the normal stress difference near the channel wall as proven in one of our former works. On the other hand, continuous dispersions containing from small- to large-aspect-ratio fibers were able to induce smoother evolutions of the fiber orientation and the flow kinematics. In the processing of fiber composites, the length of suspended fibers is always continuously distributed because of fiber breakage during processing; thus, the smooth evolutions of the flow kinematics and the stress distribution can be attained.This paper was presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

5.
This paper studies the application of the discrete Fourier transform (DFT) to predict angular orientation distributions from images of fibers and cells. Angular distributions of fibers in composites define their material properties. In biological tissues, cell and fiber orientation distributions are important since they define their mechanical properties and function.We developed a filtering scheme for the DFT to predict angular distributions accurately. The errors involved in this DFT technique and their sources were quantified through Monte Carlo simulation of computer-generated images. The knowledge of these errors allows one to verify the suitability of the method for a particular application. We found that the DFT method is most accurate for slender fibers, and propose a means to minimize errors by optimizing parameters. This method was applied to predict orientation distribution of cells and actin fibers in bio-artificial tissue constructs.  相似文献   

6.
Combined Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) measurements have been performed in dilute suspensions of rod-like particles in wall turbulence. PIV results for the turbulence field in the water table flow apparatus compared favorably with data from Direct Numerical Simulations (DNS) of channel flow turbulence and the universality of near-wall turbulence justified comparisons with DNS of fiber-laden channel flow. In order to examine any shape effects on the dynamical behavior of elongated particles in wall-bounded turbulent flow, fibers with three different lengths but the same diameter were used. In the logarithmic part of the wall-layer, the translational fiber velocity was practically unaffected by the fiber length l. In the buffer layer, however, the fiber dynamics turned out to be severely constrained by the distance z to the wall. The short fibers accumulated preferentially in low-speed areas and adhered to the local fluid speed. The longer fibers (l/z > 1) exhibited a bi-modal probability distribution for the fiber velocity, which reflected an almost equal likelihood for a long fiber to reside in an ejection or in a sweep. It was also observed that in the buffer region, high-speed long fibers were almost randomly oriented whereas for all size cases the slowly moving fibers preferentially oriented in the streamwise direction. These phenomena have not been observed in DNS studies of fiber suspension flows and suggested l/z to be an essential parameter in a new generation of wall-collision models to be used in numerical studies.  相似文献   

7.
An experimental study was conducted to develop and characterize systematically a new turbulence generator system to yield large turbulent Reynolds numbers in a compact configuration. The effect of the geometric parameters of two families of high-blockage plates on the resulting turbulent flow field was systematically studied: one series of plates was characterized by the number and distribution of circular openings; a second series had non-circular opening(s) with different shapes, distribution and position of the opening(s). The plates were placed upstream of a contoured contraction and the near field at the centerline of the resulting turbulent free jet was characterized by hot-wire anemometry in terms of mean axial velocity, turbulence intensity, turbulence length scales and corresponding Reynolds numbers. The plate with a central, non-circular opening produced the best compromise of highest turbulence levels along with excellent uniformity in average velocity and turbulence intensity, as evidenced by scan in the transverse direction. It appears to be the most promising one. By comparison with more traditional approaches to turbulence generation, we increased the turbulent Reynolds numbers based on the integral length scale to values on the order of 1000, which was one of the design objectives. Other plate geometries also yielded intense turbulence, but, in some cases, exhibited spurious frequency peaks in their power spectrum. The turbulent generation approach is to be adapted to combustion studies to reproduce conditions typical of practical system in relatively small experimental set-ups that are well-suited for bench-top experiments.  相似文献   

8.
 The main aim of the present investigation is to experimentally study the flow parameters inside a spherical combustion chamber of an indirect injection diesel engine. For this a spherical chamber has been fitted in the cylinder head. Using a constant temperature hot-wire anemometer, measurements have been made under non-firing condition at 400 and 500 rpm during compression stroke. Mean velocity and turbulence intensity values are evaluated from the hot-wire signal. Measurements are made at three axial planes, six angular locations and four radial positions. Large variations of mean velocity and turbulence intensity have been observed within the chamber. From the measurements, the mean velocity and turbulence intensity are found to be maximum at 30° before compression TDC and these values are found to decrease towards the centre of the pre-chamber. The mean velocity and turbulence intensity distribution with respect to various locations and crank angles are presented and discussed. Received: 7 November 1995/Accepted: 26 October 1997  相似文献   

9.
An experimental study has been undertaken to investigate the effect of Reynolds number on the near-field region of circular turbulent air jets. Measurements were made using a two-component Laser Doppler Anemometer, and included mean velocity, turbulence intensity, skewness factor, flatness factors and power spectrum. Measurements were taken up to 10 nozzle exit diameter in the downstream direction for different exit Reynolds numbers in the range of 1400 to 20000. The Reynolds number was found to have a strong effect on the jet flow behavior in the near-field region; the centerline velocity decays faster (decay constant = 6.11 for Re = 19400, = 1.35 for Re 1430) and the potential core gets shorter with decreasing Reynolds number. Profile measurements of the skewness and flatness factors indicate that the jet flow becomes more intermittent with decreasing Reynolds number. Power spectrum measurements of the streamwise fluctuating velocities reflects the high energy content of the high Reynolds number jet. It also reveals that there is greater energy at the higher frequencies with increasing Reynolds number.  相似文献   

10.
陈荣前  聂德明 《力学学报》2017,49(2):257-267
研究颗粒在流体剪切作用下的运动特性是理解和预测颗粒悬浮流流动行为的关键.当流体的惯性不能忽略时,颗粒的运动往往变得非常复杂.本文采用格子Boltzmann方法对中等雷诺数下椭圆颗粒在剪切流中的旋转运动进行了模拟.首先,研究了雷诺数(0Re 170)的影响,结果表明当雷诺数低于临界值时,颗粒以周期性的方式旋转,角速度最小时对应的长轴方向随着雷诺数的增大而逐渐远离水平方向,而且这一倾角与雷诺数呈分段线性关系;当雷诺数大于临界值时,椭圆形颗粒最终保持静止状态,且静止时的转角与雷诺数呈幂函数关系,雷诺数越大,转角越小,椭圆的长轴越远离水平位置.其次,研究了椭圆颗粒的长短轴之比α(1α10)的影响,结果表明颗粒旋转的周期与α呈幂函数关系,α越大,颗粒旋转周期越小.此外,当α超过临界值时,颗粒也在水平位置附近保持静止状态,此时的转角与α也呈幂函数关系,α越大,转角越小.研究还发现,当雷诺数较大时椭圆颗粒在旋转过程中会产生过冲现象.  相似文献   

11.
A combined numerical and experimental investigation has been carried out to study the flow behaviour in a spacer-filled channel, representative of those used in spiral-wound membrane modules. Direct numerical simulation and particle image velocimetry were used to investigate the fluid flow characteristics inside a 2 × 2 cell at Reynolds numbers that range between 100 and 1000. It was found that the flow in this geometry moves parallel to and also rotates between the spacer filaments and that the rate of rotation increases with Reynolds number. The flow mechanisms, transition process and onset of turbulence in a spacer-filled channel are investigated including the use of the velocity spectra at different Reynolds numbers. It is found that the flow is steady for Re < 200 and oscillatory at Re ~ 250 and increasingly unsteady with further increases in Re before the onset of turbulent flow at Re ~ 1000.  相似文献   

12.
Measurements of the mean velocity and turbulence intensity are presented for a rectangular jet of water ejecting into a gaseous ambient. Data are reported for streamwise locations up to 30 nozzle widths from the discharge and spanwise locations covering the inner 80% of the jet width. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). The results track the mean velocity and turbulence intensity profiles with streamwise distance, highlighting changes in both the profile shapes and magnitudes for both measured quantities. Independent of nozzle configuration, the mean velocity profile was shown to be most nonuniform and the turbulence intensity most nonhomogeneous at the nozzle discharge. With increasing streamwise distance, the mean velocity profile underwent a gradual transition to a completely uniform condition, while the turbulence field decayed and became homogeneous. The rate of viscous dissipation was shown to depend strongly on the nozzle exit condition. This work was supported by the National Science Foundation under grant numbers CTS-8912831 and CTS-9307232  相似文献   

13.
邵传平  王建明 《力学学报》2006,38(2):153-161
引入一个窄条作为控制件,在Re=3.0×10 3~2.0×10 4范围内对圆柱尾流进行控制实验。窄条长度与柱体长度相同,厚 度为柱体直径的 0.015~0.025倍,宽度为柱体直径的0.18倍. 窄条的两个长边 与柱中心轴平行, 而且三者共面. 控制参数为窄条位置, 可由间距(窄条到柱轴)比λ/(0.5D)和风向角β (窄 条面与来流的夹角)确定. 采用流动显示和热线测量方法,对控制和未控制尾流的流动状态, 平均速度分布和脉动速度情况,以及作用于柱体和控制件的总阻力进行了研究和比较. 研究结果证明, 当窄条位于柱体尾流中一定区域内时, 可有效抑制柱体两侧的旋涡脱落.有效控制后的尾流湍流度也相应减小. 在不同Re数下,找出了有效抑制旋涡脱落的窄条位置区域, 并用动量积分估计了作用于柱体和窄条上的总阻力与光圆柱阻力的比值及其随风向角的变 化. 对λ/(0.5D)=2.9情况,得到了减阻的风向角区域(β=0°~40°与180°附近)以及最大减阻率32%.以上事实表明,在近尾流局部区域施加小的干扰,可改变较高Re数圆柱尾流的整体性质.  相似文献   

14.
In this study, we have investigated the influence of shape of planar contractions on the orientation distribution of stiff fibers suspended in turbulent flow. To do this, we have employed a model for the orientational diffusion coefficient based on the data obtained by high-speed imaging of suspension flow at the centerline of a contraction with flat walls. This orientational diffusion coefficient depends only on the contraction ratio and turbulence intensity. Our measurements show that the turbulence intensity decays exponentially independent of the contraction angle. This implies that the turbulence variation in the contraction is independent of the shape, consistent with the results by the rapid distortion theory and the experimental results of axisymmetric contractions. In order to determine the orientation anisotropy, we have solved a Fokker–Planck type equation governing the orientation distribution of fibers in turbulent flow. Although the turbulence variation and the orientational diffusion are independent of the contraction shape, the results show that the variation of the orientation anisotropy is dependent on shape. This can be explained by the variation of the rotational Péclet number, Per, inside the contractions. This quantity is a measure of the importance of the mean rate of the strain relative to the orientational diffusion. We have shown that when Per < 10 turbulence can significantly influence the evolution of the orientation anisotropy. Since in contractions with identical inlet conditions the streamwise position where Per = 10 depends on the shape, the orientation anisotropy is dependent on the variation of rate of strain in a given contraction. We demonstrate the shape effect by considering contraction with flat walls as well as three contractions with different mean rate of strain variation.  相似文献   

15.
We perform fully resolved direct numerical simulations of an isolated particle subjected to free-stream turbulence in order to investigate the effect of turbulence on the drag and lift forces at the level of a single particle, following Bagchi and Balachandar’s work (Bagchi and Balachandar in Phys Fluids 15:3496–3513, 2003). The particle Reynolds numbers based on the mean relative particle velocity and the particle diameter are Re?=?100, 250 and 350, which covers three different regimes of wake evolution in a uniform flow: steady axisymmetric wake, steady planar symmetric wake, and unsteady planar symmetric vortex shedding. At each particle Reynolds number, the turbulent intensity is 5–10% of the mean relative particle velocity, and the corresponding diameter of the particle is comparable to or larger than the Kolmogorov scale. The simulation results show that standard drag values determined from uniform flow simulations can accurately predict the drag force if the turbulence intensity is sufficiently weak (5% or less compared to the mean relative velocity). However, it is shown that for finite-sized particles, flow non-uniformity, which is usually neglected in the case of the small particles, can play an important role in determining the forces as the relative turbulence intensity becomes large. The influence of flow non-uniformity on drag force could be qualitatively similar to the Faxen correction. In addition, finite-sized particles at sufficient Reynolds number are inherently subjected to stochastic forces arising from their self-induced vortex shedding in addition to lift force arising from the local ambient flow properties (vorticity and strain rate). The effect of rotational and strain rate of the ambient turbulence seen by the particle on the lift force is explored based on the conditional averaging using the generalized representation of the quasi-steady force proposed by Bagchi and Balachandar (J Fluid Mech 481:105–148, 2003). From the present study, it is shown that at Re?=?100, the lift force is mainly influenced by the surrounding turbulence, but at Re = 250 and 350, the lift force is affected by the wake structure as well as the surrounding turbulence. Thus, for a finite-sized particle of sufficient Reynolds number supporting self-induced vortex shedding, the lift force will not be completely correlated with the ambient flow. Therefore, it appears that in order to reliably predict the motion of a finite-sized particle in turbulence, it is important to incorporate both a deterministic component and a stochastic component in the force model. The best deterministic contribution is given by the conditional average. The influence of ambient turbulence at the scale of the particle, which are not accounted for in the deterministic contribution, can be considered in stochastic manner. In the modeling of lift force, additional stochastic contribution arising from self-induced vortex shedding must also be included.  相似文献   

16.
A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Reynolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution function is used to describe the local orientation state of the suspension and evolves according to a Fokker–Plank type equation. The planar orientation distribution function is determined along streamlines of the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor. The coupling term accounts for the two-way interaction and momentum exchange between the fluid and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker. Numerical predictions are made for two different orientation states at the inlet to the contraction, namely a fully random and a partially aligned fiber orientation state. Results from these numerical predictions show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel, to something resembling a plug flow when the fiber phase is considered in the fluid momentum equations. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or in a fully random orientation state. When the suspension enters the channel in an aligned orientation state, fiber orientation is shown to be only marginally changed when the two-way coupling is included. However, significant differences between coupled and uncoupled predictions of fiber orientation were found when the suspension enters the channel in a random orientation state. In this case, the suspension was shown to align much more quickly when the mutual coupling was accounted for and profiles of the orientation anisotropy were considerably different both qualitatively and quantitatively.  相似文献   

17.
In this study, we investigate the effect of the spanwise width on the mixing layer behind a rearward-facing step. Results for aspect ratios (tunnel width/step height) of 10 and 4 and Reynolds numbers of 11,000 and 5,000 are presented. A frequency shifted, single component LDV system was used to obtain mean streamwise velocity profiles, turbulence intensity profiles, and normal velocity spectra at four streamwise and three spanwise positions for each test case. The mean velocity and turbulence intensity profiles are constant across the width of the test section for either of the Reynolds numbers considered, but there are significant differences among the cases studied. At a distance greater than three step heights down-stream of the step, the peak turbulence intensity is greater for higher aspect ratio and is relatively insensitive to Reynolds number. The peak frequency is lower and the spectrum is narrower for a higher aspect ratio in the region near the step.  相似文献   

18.
The steady forced convection mass and heat transfer from circular cylinders has been investigated. The full mass transport differential equation has been integrated numerically. The employed velocity distributions are known [1]. The most important result is reproduced in a correlation for the mass transfer, which regards the turbulence intensity in the flow of the cylinders. This mass transfer law is proofed theoretically and experimentally in the range of Schmidt numbers from Sc=0.73 up to S=3.3×104; however it is valid for 0≤Sc∞. It can be used for all values of Re Sc greater than Re Sc=7.3×10?5 and for all values of the Reynolds number less than the critical value, Rekr. The critical Reynolds number, Rekr, is a known function of the turbulence intensity [1]. For values of Re Sc less than Re Sc=7.3 x10?5 the mass transfer can be predicted by an analytical equation that based on Oseen type linearization of the differential equation. The conditions are illustrated, which allow to calculate the quantities for heat transfer by means of the correlations for the mass transfer.  相似文献   

19.
We study the flow-induced orientation dynamics of semiflexible fibers in dilute fiber suspensions. Starting from the equations of motion for a two-rod model of flexible fibers in Stokes flow, the Smoluchowski equation for a connected monomer orientation distribution function is derived. We then obtain a set of equations for the time dependence of the first and second moments of the orientation distribution function, thus extending the Folgar Tucker equations for short rigid fiber suspensions to flexible fiber suspensions. The resulting generalized equations for the orientation dynamics of a suspension of flexible fibers are solved for simple channel flow. It is shown that all qualitative effects of bending and straightening of fibers and their influence on the orientation of flexible fibers are captured within our model. A scalar measure for the distribution of bending in a flow is introduced, which allows to detect the degree of bending of fibers. Paper was presented at the 3rd Annual Rheology Conference, AERC 2006, April 27–29, 2006, Crete, Greece.  相似文献   

20.
Velocity profile of fiber suspension flow in a rectangular channel is measured by pulsed ultrasonic Doppler velocimetry (PUDV), and the effect of fiber concentration and Reynolds number on the shape of the velocity profile is investigated. Five types of flow behavior are observed when fiber concentration increases or flow rate decreases progressively. The turbulent velocity profiles of fiber suspension can be described by a correlation with fiber concentration, nl3, and Reynolds number, Re as the main parameters. The presence of fiber in the suspension will reduce the turbulence intensity and thus reduce the turbulent momentum transfer. On the other hand, fibers in the suspension have the tendency to form fiber networks, which will increase the momentum transfer. The relative contribution of these two types of momentum flux will determine the final shape of the velocity profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号