首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用等体积浸渍法制备了一系列负载型Ni基催化剂,利用XRD、H2-TPR、NH3-TPD 等技术表征了催化剂的理化特性,考察了载体(CMK-3、SiO2ZrO2、MgO、Al2O3)、助剂(Cu、Ce、Fe)对Ni基催化剂理化特性的影响,测试了230 oC、0.1 MPa冷压下催化剂对邻甲酚原位加氢反应的性能.结果表明,在负载型镍基催化剂作用下,甲醇水相重整制氢反应可以与邻甲酚的原位加氢反应相耦合;以CMK-3为载体的催化剂活性明显优于其他三种载体,邻甲酚的转化率为45.35%;助剂的添加对催化剂性能影响显著,Fe 的引入使原位加氢体系的转化率降至40.49%,助剂Ce、Cu的加入提高了Ni/CMK-3催化剂的原位加氢反应性能,转化率分别提高至64.6%、66.8%,Cu的添加改变了产物的分布,在产物中出现了新产物甲苯;同时探讨原位加氢反应路径及反应机理.  相似文献   

2.
通过添加不同比例铁对镍基催化剂进行改性制备得到Fe-Ni/Al_2O_3(FNA)催化剂,在鼓泡流化床上完成焦油模型化合物(甲苯)水蒸气催化重整性能实验,并对反应前后催化剂进行XRD、TPR、BET、XPS和TPO-MS等表征。结果表明:添加铁能够显著提高镍基催化剂催化活性,并有效抑制积碳的生成。F2N1A催化剂(铁镍摩尔比为2)相同条件下甲苯转化率达到90.2%,而未添加助剂的NA催化剂只有44.7%。相应积碳减少了40%左右,其中石墨型等难去除积碳只有NA催化剂的1/3。镍铁合金是Fe-Ni/Al_2O_3催化剂的活性组分,甲苯反应过程中合金中的铁容易被氧化,为镍颗粒表面提供充足的氧。  相似文献   

3.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应"从头合成"(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO_2, H_2O和HCl/Cl_2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C—H和C—Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h~(-1)、 20%O_2和100 ppm CB,当Ce质量分数为15%、 V质量分数为2.5%时, Ce-V-Ti催化降解氯苯活性最高, 150℃能达到约60%转换率, 300℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现, Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO_2,比表面积为95.53 m~2·g~(-1),孔容0.29 cm~3·g~(-1),孔径6.5 nm。表面官能团主要为C—H基团和H—O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   

4.
Ce、Mo助剂和分散剂对VPO催化剂物性的影响   总被引:1,自引:0,他引:1  
曾翎  季伟捷 《光散射学报》2004,16(4):357-363
通过在有机相制备中添加助剂和分散剂制备出一类新型的VPO催化剂。采用BET、XRD、Raman、TEM、XPS等表征手段对影响催化剂的比表面积、晶相结构以及表面V离子价态考察VPO催化剂的比表面积和晶体结构。并将催化剂应用到正丁烷选择氧化生成顺酐的反应中。实验结果表明,引入Ce、Mo助剂基本上没有明显改变催化剂的比表面积,但确实改变了催化剂的物相组成、粒子形貌及表面状态。加入Ce、Mo助剂使催化剂的选择性有了一定的提高。  相似文献   

5.
以氧化铝为载体,负载不同比例的金属组分Fe、Ce制作单组分及多组分的负载型催化剂。实验研究在不同反应温度、氧含量和空速比下,此类负载型催化剂的SCR脱硝性能。结果表明:由于稀土元素Ce的加入,多组分的8Fe-2Ce/Al_2O_3的催化脱硝效率明显高于单组分的8Fe/Al_2O_3,在240℃时可达94%,而且具有比单组分催化剂更好的抗硫性能。但Ce的加入并不是越多越好,Ce的过量加入反而会影响催化剂的催化脱硝效率。催化剂的制备方法与其催化脱硝效率有关,沉淀法制备的催化剂的催化脱硝效率高于浸渍法制备的催化剂,以450℃煅烧制备的催化剂的催化脱硝效率高于550℃煅烧的催化剂。脱硝实验条件影响催化剂的催化脱硝效率,3%氧含量下的催化脱硝效率高于无氧条件下的,低空速比时脱硝效果高于高空速比的。  相似文献   

6.
对HZSM-5、HY和MCM-22三种催化剂进行了比较, 其中HZSM-5催化裂解木质素制备苯、甲苯和二甲苯(BTX)的结果最优.确定了木质素催化裂解的最佳反应条件,包括反应温度、载气流速、催化剂/木质素配比.当反应温度为550~600 oC,载气流速为300 mL/min,催化剂/木质素配比为2时,使用HZSM-5催化裂解制备BTX的最高C产率和芳香选择性分别可达25.3%和90.9%。  相似文献   

7.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应“从头合成”(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350 ℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO2,H2O和HCl/Cl2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C-H和C-Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h-1、20%O2和100 ppm CB,当Ce质量分数为15%、V质量分数为2.5%时,Ce-V-Ti催化降解氯苯活性最高,150 ℃能达到约60%转换率,300 ℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现,Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO2,比表面积为95.53 m2·g-1,孔容0.29 cm3·g-1,孔径6.5 nm。表面官能团主要为C-H基团和H-O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   

8.
以生物油基合成气的模拟气H2/CO/CO2/N2(62/8/25/5,体积比)为原料,采用固定床反应器,在1.5 MPa、300 o C、W=F=12.5 gcath/mol的条件下,研究了钾助剂及钾的添加量对沉淀铁催化剂费托合成催化活性及产物选择性的影响.生物油基合成气是通过生物油催化蒸汽重整得到.研究发现,钾的添加促进了沉淀铁催化剂费-托反应及逆水气变换反应的活性.此外,钾的加入增加了碳氢产物的平均分子量(链长).结果表明,随着钾助剂含量的增加,甲烷的选择性降低,液相碳氢产物(C5+)的选择性增加.通过多种方法,例如X射线衍射、X射线光电子能谱及比表面等对不同钾含量的费托合成催化剂进行了表征.通过费托合成实验和催化剂的表征,选出100Fe/6Cu/16Al/6K(质量比)作为生物油基合成气费-托合成最适宜的催化剂.  相似文献   

9.
为研制高性能的甲烷二氧化碳苇整反应催化剂,本文采用实验测量方法研究了不同制备条件、添加不同助剂以及不同反应温度对于催化剂活性及选择性的影响规律。结果表明,在600℃下焙烧4 h为较好的催化剂制备条件,Ni-MgO-CeO_2/γ-Al_2O_3在各个反应温度下性能均较好。温度对于催化剂的活性、稳定性以及选择性均有较大影响,对于活性的影响尤为显著,在600~800℃的温度范围内,温度每升高100℃,反应物的转化率可提高约20%~30%。  相似文献   

10.
利用分子筛催化剂(NaZSM-5、HZSM-5、ReY和HY)研究了木屑上催化裂解制取芳香物(苯、甲苯、二甲苯)的反应过程,发现HZSM-5催化剂具有最高的生物质裂解制备芳香化合物的活性. 在450 oC、 载气流速为300 mL/min和催化剂/木屑比为2的优化反应条件下,芳香化合物的产率和选择性分别达到26.5%和62.5C-mol%.  相似文献   

11.
O644.12006054769纳米Ce1-xZrxO2催化剂上乙醇催化氧化发光研究=Cata-lytic oxidation cataluminescence of ethanol over catalystsCe1-xZrxO2[刊,中]/叶青(清华大学化学系,有机光电子与分子工程教育部重点实验室.北京(100084)),张新荣…//高等学校化学学报.—2006,27(4).—726-730研究了纳米Ce1-xZrxO2上乙醇催化氧化发光特性,重点考察了反应温度和催化剂组成[n(Ce)/n(Zr)]对发光强度的影响。在相近的反应条件下研究了纳米Ce1-xZrxO2上乙醇催化氧化反应的活性、选择性和可能的催化发光机理。结果表明,催化发光强度与催化反应中生成…  相似文献   

12.
以N-甲基苯胺、氯乙酰氯、无水醋酸钠、甲醇等为原料,经乙酰化,酯化及酯交换反应合成了2-羟基-N-甲基乙酰苯胺,三步总收率为88.0%.N-甲基苯胺、氯乙酰氯在三乙胺的催化下,按n(C6H5NHCH3):n[ClCH2C(O)Cl]:n[N(C2H5)3]=1:1.05:1,经乙酰化反应得到2-氯代-N-甲基乙酰苯胺(I),收率为93.8%;(I)与无水醋酸钠在相转移催化剂四丁基溴化铵的存在下,按n(I):n(NaOAc)=1:1.2,经酯化反应合成了2-乙酰氧基-N-甲基乙酰苯胺(Ⅱ),收率为97.3%;(Ⅱ)与甲醇按n(Ⅱ):n(CH3OH)=1:10,在氢氧化钾的催化下,进行了酯交换反应得到2-羟基-N-甲基乙酰苯胺(Ⅲ),收率为96.4%.并利用红外、质谱和元素分析,对各产物进行了表征,确认了分子结构.  相似文献   

13.
原位DRIFTS研究CH4部分氧化和CO2重整的耦合   总被引:3,自引:0,他引:3  
8%Ru-5?/γ-Al2O3催化剂对于甲烷的低温活化具有较好的催化活性,在500℃下甲烷、二氧化碳和氧气的耦合反应中,吸热反应二氧化碳重整和放热反应甲烷部分氧化进行耦合强化,使得耦合反应中的甲烷转化率为38.8%。用原位漫反射傅里叶红外光谱法对钌系催化剂耦合甲烷部分氧化和二氧化碳重整反应体系机理进行研究。CO在8%Ru-5?/γ-Al2O3上吸附,表明CO在催化剂表面上波数为2 167 cm-1(2 118 cm-1)和2031 cm-1(2 034 cm-1)处形成孪生态Ru(CO)2和Ce(CO)2吸附物种,而且高温下CO吸附物种很容易从催化剂表面脱附出来。原位漫反射红外实验结果表明甲烷部分氧化反应时催化剂表面上有吸附物种碳酸根、甲酰基(甲酸盐)和一氧化碳的形成,其中表面的甲酰基和甲酸盐物种是甲烷部分氧化反应的主要活性中间物,这些中间活性中间体由甲烷吸附态CHx和催化剂表面的氧吸附态结合而形成的,随后这种中间物种再分解为CO产物;甲烷和二氧化碳重整反应时没有新的吸附物种产生,由此提出重整反应的机理是吸附态的甲烷和二氧化碳在催化剂活性中心上进行活化解离而生成合成气;甲烷、二氧化碳和氧气耦合反应过程中出现新的羟基物种(桥式羟基Ru-(OH)2),耦合反应机理复杂可能是由部分氧化和重整两类反应机理的复合,其中桥式羟基Ru-(OH)2参与了反应的进行。  相似文献   

14.
CuO-CeO2系列催化剂是高效的CO选择性氧化反应的催化剂,通过原位漫反射红外光谱对掺杂碱金属和碱土金属氧化物的CuO-CeO2催化剂表面的吸附物种进行了研究。结果表明CuO-CeO2系列催化剂上,2 106 cm-1处出现CO的红外吸附峰。在反应气氛中,此峰的强度随着温度先升高后降低,说明Cu+是CO主要的活性吸附中心。低温下催化剂表面吸附的CO主要以可逆形式脱附出来,而高温下CO则以不可逆的形式脱附出来。催化剂表面在3 660 cm-1处出现尖锐的红外峰,归属于CeO2经还原产生的Ce-(OH)2偕式基团。在1 568,2 838和2 948 cm-1附近处出现甲酸根的红外谱峰,以及1 257和1 633 cm-1处出现碳酸根物种的红外峰。甲酸根物种是气相的CO与表面的羟基反应生成的产物,该物种的C—H键断裂生成碳酸根物种,这两物种均会降低催化剂的高温活性。Cu1Li1Ce9Oδ催化剂出现较强的CO2和甲酸根的红外峰,温度高于180℃时,该催化剂上还能看到微弱的CO红外峰,说明锂离子的给电子性质有利于提高Cu1Li1Ce9Oδ催化剂上CO的不可逆脱附,抑制氢的活化吸附,同时促进了甲酸根物种的生成。低温下Cu1Mg1Ce9Oδ和Cu1Ba1Ce9Oδ催化剂上CO的吸附量较多,但主要以可逆脱附形式脱附出来,对CO选择性氧化没有贡献。  相似文献   

15.
以甲苯、乙苯、异丙苯、间二甲苯和均三甲苯为原料,在由路易斯酸、有机酸和无机酸所组成的新型复合催化剂协同催化下,经多氯甲基化反应制备了2,4,6-三(氯甲基)甲苯、2,4,6-三(氯甲基)乙苯、2,4,6-三(氯甲基)异丙苯、2,4,6-三(氯甲基)间二甲苯和2,4,6-三(氯甲基)均三甲苯.利用IR、1H NMR、13C NMR等手段对所合成产物的结构进行了表征,在优化反应条件下,5种产物的收率分别可达 24.5%、31.7%、15.3%、78.1%和89.6%.  相似文献   

16.
本文证明了在二氧化硅改性的分子筛催化作用下,生物质基多元醇(如山梨醇、木糖醇、赤藓糖醇、甘油和乙二醇)可以经过催化裂解、烷基化和异构化等反应,生成高附加值的化学品(对二甲苯).与HZSM-5分子筛催化剂相比,二氧化硅改性的分子筛降低了分子筛催化剂的外表面酸和孔径,从而显著的提高对甲苯的选择性和产率.本文详细讨论了催化剂、甲醇添加剂、反应温度和不同类型多元醇原料对对二甲苯选择性和产率的影响.甲醇的添加促进多元醇催化裂解中的烷基化反应,提高了二甲苯的产率.在15%SiO_2/HZSM-5催化剂作用下,对二甲苯的产率最高可达到10.9 C-mol%,对二甲苯在二甲苯中选择性达到91.1%.本文通过研究相关重要反应和催化剂特性,揭示了生物质基多元醇催化裂解制备对二甲苯的反应路径.  相似文献   

17.
采用水热合成法.制备了不同Al2O3含量的Ni/Zr0.4Ce0.6O2-Al2O3催化剂。采用X-射线衍射(XRD)和扩展X光吸收精细结构(EXAFS),对催化剂样品进行结构表征;考察了Al2O3的加入对催化剂结构和CH4-CO2重整反应活性的影响。结构表征和活性测试表明,催化剂中存在的主要晶相是Zr0.4Ce0.6O2.Al2O3的加入,使催化剂颗粒度变小,镍的分散度提高。并使反应活性有明显改进,而过量Al2O3的加入,却容易导致积炭.  相似文献   

18.
本文证明了在二氧化硅改性的分子筛催化作用下,生物质基多元醇(如山梨醇、木糖醇、赤藓糖醇、甘油和乙二醇)可以经过催化裂解、烷基化和异构化等反应,生成高附加值的化学品(对二甲苯).与HZSM-5分子筛催化剂相比,二氧化硅改性的分子筛降低了分子筛催化剂的外表面酸和孔径,从而显著的提高对甲苯的选择性和产率.本文详细讨论了催化剂、甲醇添加剂、反应温度和不同类型多元醇原料对对二甲苯选择性和产率的影响.甲醇的添加促进多元醇催化裂解中的烷基化反应,提高了二甲苯的产率.在15%SiO_2/HZSM-5催化剂作用下,对二甲苯的产率最高可达到10.9 C-mol%,对二甲苯在二甲苯中选择性达到91.1%.本文通过研究相关重要反应和催化剂特性,揭示了生物质基多元醇催化裂解制备对二甲苯的反应路径.  相似文献   

19.
分别用稀土金属配合物{(μ-η5:η1):η1-2-[(2,4,6-Me3C6H2)NCH2]C4H3N]LnN(SiMe3)2}2[Ln=Y(1),Nd(2),Sm(3),Dy(4),Er(5)]催化3种末端炔烃与N,N′-二异丙基碳二亚胺反应,得到了3种相应的脒产物.研究了不同条件下稀土配合物的催化活性,考察了温度、时间、催化剂用量、催化剂种类等因素对反应的影响.结果表明,该类配合物具有良好的催化活性,在以THF为溶剂、温度为60℃、时间为6h、配合物3为催化剂、催化剂的摩尔用量比为3%的条件下,反应产率最高.  相似文献   

20.
通过不同孔特征的分子筛(HZSM-5、HY沸石和MCM-41)实现生物油催化转化为三苯(苯、甲苯和对甲苯). 基于三苯的产率和选择性,芳香化合物逐次降低顺序为: HZSM-5>MCM-41>HY沸石.用HZSM-5催化裂解生物油产生芳香化合物的最大产率为33.1%,选择性为86.4%. 研究了反应条件对生物油催化裂解的影响,结合催化剂表征结果,讨论了催化剂的结构与性能之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号