首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A rigorous investigation is presented on the propagation characteristics of non-linear dust acoustic(DA)waves in an unmagnetized dusty plasma system containing non-thermal and vortex-like ions and Maxwellian electrons under the effect of a fluctuating charged dust fluid.The three-dimensional(3D)Burgers'equation and a new form of a lower degree modified 3D Burgers'equation with their analytical solutions are derived to study the features of shock waves in such plasmas.The effect of the population of non-thermal ions,the vortex-like ion parameter as well as the temperature ratios of ions and electrons on the evolution of shock waves in the presence of dust charge fluctuation is presented.This theoretical investigation might be effectively utilized to unveil the nature of many astrophysical plasma environments(Saturn's spokes etc.)where such plasmas are reported to have existed.  相似文献   

2.
In this work, the effects of superthermal and trapped electrons on the oblique propa- gation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (k) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.  相似文献   

3.
The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and employing the reductive perturbation theory,a quasi-Kd V equation is derived in the viscous plasma and a damping solitary wave is obtained.It is found that the damping rate increases as the viscosity coefficient increases,or increases as the length and width of the rectangle decrease,for all kinds of boundary condition.Nevertheless,the magnitude of the damping rate is dominated by the types of boundary condition.We thus observe the existence of a damping solitary wave from the fact that its amplitude disappears rapidly for a → 0and b → 0,or ν→ +∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号