首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.  相似文献   

2.
An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.  相似文献   

3.
This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2 /Ar discharges.Depending on the nitrogen content in the feed gas and the input power,the discharge can operate in two diferent modes: a homogeneous glow discharge and a constricted discharge.With increasing input power,the number of discharge columns increases.The discharge columns have starlike structures and exhibit symmetric self-organized arrangement.Optical emission spectroscopy was performed to estimate the plasma temperature.Spatially resolved gas temperature measurements,determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge.Gas temperature in the middle of the gas gap is lower than that close to the electrodes.  相似文献   

4.
Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force(EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.  相似文献   

5.
This paper presents the fabrication and a spectroscopic study of a stable radiofrequency dielectric barrier discharge(RF DBD) in Ar with a novel dielectric,anodic alumina,at atmospheric pressure.Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid.The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W.Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K,respectively,as the input power changes from 30 W to 80 W.These temperature ranges are suitable for surface modification applications.  相似文献   

6.
An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz) power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g^+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.  相似文献   

7.
In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/Ou, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 rain is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.  相似文献   

8.
A homogeneous atmospheric pressure dielectric barrier discharge is studied. It is in argon with small admixtures of titanium tetrachloride vapour and oxygen for the deposition of thin titania films on glass substrates. A special electrode configuration was applied in order to deposit the titania film uniformly. The sustaining voltage (6 kV to 12 kV), current density (about 3 mA/cm^2) and total optical emission spectroscopy were monitored to characterize the discharge in the gap of 2 mm. Typical deposition rates ranged from approximately 30 nm/min to 120 nm/min. The film morphology was investigated by using scanning electron microscopy (SEM) and the composition was determined with an energy dispersive x-ray spectroscopy (EDS) analysis tool attached to the SEM. The crystal structure and phase composition of the films were studied by x-ray diffraction (XRD). Several parameters such as the discharge power, the ratio of carrier gas to the precursor gas, the deposition time on the crystallization behavior, the deposition rate and the surface morphology of the titania film were extensively studied.  相似文献   

9.
An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are studied with a current and a voltage probe. A thermal couple is used to measure the temperature distribution along the axis of the jet stream. The temperature distribution curve is generated for the He/O2 jet stream at the discharge power of 150 W. This jet can etch the photo-resistant material at an average rate of 100 nm/min on the surface of silicon wafers at a right angle.  相似文献   

10.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

11.
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.  相似文献   

12.
An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range.  相似文献   

13.
Aniline is a toxic water pollutant detected in drinking water and surface water,and this chemical is harmful to both human and aquatic life.A dielectric barrier discharge(DBD)reactor was designed in this study to investigate the treatment of aniline in aqueous solution.Discharge characteristics were assessed by measuring voltage and current waveforms,capturing light emission images,and obtaining optical emission spectra.The effects of several parameters were analyzed,including treatment distance,discharge power,DBD treatment time,initial pH of aniline solutions,and addition of sodium carbonate and hydrogen peroxide to the treatment.Aniline degradation increased with increasing discharge power.Under the same conditions,higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances.At a discharge power of 21.5 W,84.32%of aniline was removed after 10 min of DBD treatment.Initial pH significantly influenced aniline degradation.Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline.Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC.  相似文献   

14.
In this work the effects of O_2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions.The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He_2~+ and O_2~-, respectively, the densities of the reactive oxygen species(ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O_2 concentration results in increasingly weak discharge and the time lag of the ignition. For O_2 concentrations below 1.1%,the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O_2 concentration and then the increase becomes weak. In particular,the total density of the reactive oxygen species reaches its maximums at the O_2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O_2 concentration of 0.5% is an optimal O_2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.  相似文献   

15.
An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.  相似文献   

16.
Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by Water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.  相似文献   

17.
Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteri...  相似文献   

18.
This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge(DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva.The plasma was characterized by using optical emission spectroscopy.Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms.It can destroy them with an average decimal reduction time(D-time) of 19 s and about 98%of thein were killed after a treatment time of 30 s.According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization.The experimental results presented in this study indicated that the helium dielectric barrier discharge,in plan-parallel electrode configuration,could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.  相似文献   

19.
In this study,a high-density polyethylene(HDPE,5-mm-thick,0.95 g/cm3) surface was treated using an RF capacitive atmospheric pressure cold Ar plasma jet.By using this Ar plasma jet,a hydrophilic HDPE surface was formed during the plasma treatment.In particular, the effects of an additive gas(N2 or O2) on the HDPE surface treatment were investigated in detail.It was shown that the addition of N2 or O2 gas had an important influence on the HDPE surface treatment.Compared to pure Ar plasma treatment,a lower value of water contact angle (WCA) was obtained when a trace of N2 or O2 gas was added.It was also found that besides the quantities of active species in the plasma jet,the treatment temperature played an important role in the HDPE surface treatment.This is because surface molecular motion is not negligible when the treatment temperature is close to the melting point of the polymer.  相似文献   

20.
Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号