首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随机振动问题的广义坐标合成法   总被引:1,自引:0,他引:1  
工程中的随机振动分析多采用完全二次型组合法(CQC)及其改进算法,如虚拟激励法(PEM)和谐波激励法(HEM)。广义坐标合成法(GCS)提出了一种计算随机响应的新思路,其基本原理是将物理空间的计算转移到自由度较小的振型空间进行,从而缩减了计算量和计算规模。对于较大规模结构体系的随机振动问题,GCS方法计算响应协方差矩阵的计算量只相当于PEM的2r/sT,其中s、r和T分别为激励功率谱矩阵的秩、振型总数和离散频率点数。此外,对于给定激励时程的问题,由于GCS方法直接求解广义坐标运动方程,因而可以方便得出响应时程。通过对几种方法的详细对比,说明对于大多数只需要求解响应方差的随机振动问题,GCS是最优的计算方法。PEM只有在s相似文献   

2.
An experimental investigation of flow-induced vibrations of gates with multiple degrees of freedom is presented. An underflown vertical gate plate with submerged discharge was allowed to oscillate both in the cross-flow (z -) and in the streamwise (x -) direction. The two purposes of the investigation were to further the insight into the hydrodynamic coupling mechanisms of the two vibration modes and to determine the interaction of the unsteady lift and drag forces. Self-excited vibration tests were run with reduced velocities VrzandVrx from 0·8 to 14, covering a range in which the instability-induced excitation (IIE) due to impinging-leading-edge vortices (ILEV) as well as the transition to galloping (MIE) occurred. The ratio of the natural frequencies of the two vibration modes fx 0/fz 0, the gate opening ratios /d, and the submergence of the gate plate were varied. Depending on the ranges of reduced velocities and frequency ratios, a complex interaction of two different kinds of instability-induced excitation was detected. Furthermore, it was found that streamwise IIE-excitation and cross-flow galloping coexist. To assess the relevant fluid dynamic amplification and attenuation mechanisms, simultaneous body response and flow velocity measurements were carried out.  相似文献   

3.

In near-fault seismic zones, the vertical acceleration experienced during a strong event can be greater than horizontal acceleration. Methods to reduce horizontal acceleration are applied in various forms and are in common use. However, methods to reduce vertical acceleration, and practical protection systems for these applications, remain elusive. One strategy to protect structures, which has been demonstrated to be effective in situations where the excitation is horizontal, is to isolate the structure. For vertical excitations, this is difficult due to the need to maintain sufficient stiffness and strength in the direction of gravitational loads. The need to maintain high stiffness for gravity loading while allowing flexibility for isolation during earthquakes has led to research on the use of High-Static-Low-Dynamic Stiffness Systems (HSLDSS) and in particular Quasi-Zero Stiffness Systems (QZSS), which have zero equivalent stiffness in the equilibrium position. Although effective, the QZSS is sensitive to mistuning and prone to large deformations for relatively small increments in static load for building applications. This paper presents the results of an analytical and experimental study in which a HSLDSS isolation system carrying a payload is subject to vertical base excitation using sinusoidal as well as actual, scaled earthquake signals. Static loading tests are also presented. This isolation system consists of rigid rotating arms, horizontal and vertical springs and a vertical damper. By a suitable selection of parameters this could also serve as a QZSS. Results show that both the QZSS and HSLDSS can significantly reduce the magnification of the force as well as the transmission of the acceleration and that the HSLDSS retains stiffness at the equilibrium position. The numerical model includes friction and is solved using direct integration of the equation of motion. Experimental results from a scale model agree well theoretical predictions.

  相似文献   

4.
In this work, the authors seek to develop an analytical framework to understand the influence of noise on an array of micro-scale oscillators with special attention to the phenomenon of intrinsic localized modes (ILMs). It was recently shown by one of the authors and co-workers (Dick et al. in Nonlinear Dyn. 54:13, 2008) that ILMs can be realized as nonlinear vibration modes. Building on this work, it is shown here that white noise excitation, by itself, is unable to produce ILMs in an array of coupled nonlinear oscillators. However, in the case of an array subjected to a combined deterministic and random excitation, the obtained numerical results indicate the existence of a threshold noise strength beyond which the ILM at one location in attenuated whilst the localization in strengthened at another location in the array. The numerical results further motivate the formulation of a general analytical framework wherein the Fokker–Planck equation is derived for a typical coupled oscillator cell of the array subjected to a combined white noise and deterministic excitation. With a set of approximations, the moment evolution equations are derived from the Fokker–Planck equation and they are numerically solved. These solutions indicate that once a localization event occurs in the array, a random excitation with noise strength above a threshold value contributes to the sustenance of the event. It is also observed that an excitation with a higher noise strength results in enhanced response amplitudes for oscillators in the center of the array. The efforts presented in this paper, in addition to providing an analytical framework for developing a fundamental understanding of the influence of white noise on the dynamics of coupled oscillator arrays, suggest that noise may be potentially used to manipulate the formation and persistence of ILMs in such arrays. Furthermore, the occurrence of enhanced response amplitudes due to an excitation with a high noise strength indicates that the framework may also be used to investigate stochastic resonance-type phenomena in coupled arrays of nonlinear oscillators including micro-scale oscillator arrays.  相似文献   

5.
Li  Zhihong  Yao  Jialing  Xu  Youlin 《Meccanica》2022,57(5):1173-1191

Asymmetric damping forces induce the equilibrium position of the isolated body to shift downward. Inspired by this phenomenon, this paper proposes the novel concept of shifting an isolated body based on the vibration of nonlinear systems with asymmetric damping forces. To verify the feasibility of this concept, a piecewise smooth isolation system is established. The incremental harmonic balance method is used to analyze the nonlinear vibration system and to obtain a steady-state analytical solution. The accuracy of the solution is verified by the Runge–Kutta method. Based on the analytical solution, the influences of some key parameters on the system vibration response are analyzed, revealing that the shift in the isolated body height increases with increasing excitation amplitude and damping asymmetry ratio. Additionally, this shift first increases and then decreases with increasing excitation frequency, reaching a peak near the natural frequency of the intermediate body. Finally, considering the complex structure, high energy consumption, and slow response of active suspension actuators, the proposed concept is applied to the tilt control of a vehicle. The simulation results show that the proposed methodology based on this concept can tilt a vehicle body to a certain angle in the turning direction, enabling the use of a semi-active actuator for vehicle tilt control to realize the control effect achieved by an active actuator.

  相似文献   

6.
In the present paper,the maximal Lyapunov exponent is investigated for a co-dimension two bifurcation system that is on a three-dimensional central manifold and subjected to parametric excitation by a bounded noise.By using a perturbation method,the expressions of the invariant measure of a one-dimensional phase diffusion process are obtained for three cases,in which different forms of the matrix B,that is included in the noise excitation term,are assumed and then,as a result,all the three kinds of singular boundaries for one-dimensional phase diffusion process are analyzed.Via Monte-Carlo simulation,we find that the analytical expressions of the invariant measures meet well the numerical ones.And furthermore,the P-bifurcation behaviors are investigated for the one-dimensional phase diffusion process.Finally,for the three cases of singular boundaries for one-dimensional phase diffusion process,analytical expressions of the maximal Lyapunov exponent are presented for the stochastic bifurcation system.  相似文献   

7.
The non-stationary random vibration of a lightly damped linear structure subjected to white noise is considered. It is shown that the probability density function of the amplitude of the structural response can be approximated by a Rayleigh distribution. Analytical formulae for the time dependent statistics of the amplitude are presented. The analytical results are compared with data obtained by a numerical simulation  相似文献   

8.
The solutions to H and H 2 optimization problems of a variant dynamic vibration absorber (DVA) applied to suppress vibration in beam structures are derived analytically. The H optimum parameters such as tuning frequency and damping ratios are expressed based on fixed-point theory to minimize the resonant vibration amplitude, as well as, the H 2 optimum parameters to minimize the total vibration energy or the mean square motion of a beam under random force excitation as analytical formulas. The reduction in maximum amplitude responses and mean square motion of a beam using the traditional vibration absorber is compared with the proposed dynamic absorber. Numerical results show the non-traditional DVA under optimum conditions has better vibration suppression performance on beam structures than the traditional design of DVA. Furthermore, comparing H and H 2 optimization procedures shows that for a beam under random force excitation, use of H2 optimum parameters resulting in smaller mean square motion than the other optimization.  相似文献   

9.
Zhang  C. Y.  Zhu  C. M.  Lin  Z. Q.  Wu  T. X. 《Nonlinear dynamics》2004,37(1):1-18
The parametrically excited lateral vibration of a mass-loaded string is investigated in this paper. Supposing that the mass at the lower end of the string is subjected to a vertical harmonic excitation and neglecting the higher-order vibration modes, the equation of motion for the mass-loaded string can be represented by a Mathieu's equation with cubic nonlinearity. Based on the stability criterion for Mathieu's equation, the critical conditions inducing parametric resonance are clarified. Theoretical analysis shows that when the natural frequency f s of the string lateral vibration and the vertical excitation frequency f satisfy f s= (n/2)f, n= 1, 2, 3, ..., parametric resonance occurs in the case of no damping. For a damped system, parametric resonance most likely occurs when f is close to 2f s, and depends on the damping of the system and the vertical excitation. The critical excitation has been derived at different frequencies. If the natural frequency of the mass vertical vibration happens to be twice that of the string lateral vibration, the parametric resonance may occur due to a small disturbance. Numerical simulations show that the lateral vibration of the string does not increase infinitely at parametric resonance because the parametric excitation is self-tuned due to the coupling between the vertical and lateral vibrations. Finally, the theoretical results are supported by some experimental work.  相似文献   

10.
Zou  Donglin  Chen  Keyu  Rao  Zhushi  Cao  Junyi  Liao  Wei-Hsin 《Nonlinear dynamics》2022,108(2):857-871

In this study, a novel quad-stable energy harvester (QEH) is developed, in which its coordinates of equilibrium points can be user-defined like programming. This programmable feature distinguishes the proposed QEH from all reported magnet-type or buckling-type vibration energy harvesters. It has the advantage that it is easy to develop a high-performance QEH by appropriately programming these coordinate points and customizing a personalized QEH for different vibration environments. The dynamic model is established by the Ritz method and the Lagrange equation. The analytical steady periodic response is obtained by the average method. When the excitation acceleration is 2 m/s2, the peak power is 575 μW at 8.5 Hz. Also, the influence of the coordinate arrangement of the equilibrium points on the energy harvesting performance is studied. A formula that can quickly determine the equilibrium point coordinates is given, and the QEH designed according to this formula has superior performance. At last, the performance of the designed QEH is compared with other reported vibration energy harvesters. It shows that the QEH has a high average output power (287 μW), high normalized power density (59.8 μW/cm3/g2), and wide operating frequency range (8.4 Hz) among these harvesters.

  相似文献   

11.
A mathematical framework for the fundamental objects of continuum mechanics is presented. In the geometric setting of general differentiable manifolds, velocity fields over bodies, modeled as sections of a vector bundle W, are generalized using notions of homological integration theory such as flat chains and cochains. The class of bodies includes fractal sets whose irregular boundaries may have infinite measures. Stresses, initially modeled as smooth differential forms valued in the dual of the jet bundle of W, are generalized to cochains represented by L ??-sections whose weak divergences are also L ??. The divergence of a stress field, defined in an earlier work, is generalized to apply to stress cochains. The co-divergence of a velocity field is a weak form of the jet extension mapping and it is the counterpart of the boundary operator for real valued flat chains.  相似文献   

12.
The effect of time-delayed feedback and fast harmonic excitation (FHE) on stationary periodic vibration and quasi-periodic responses in a parametric and self-excited weakly nonlinear oscillator is analyzed in this paper. The method of direct partition of motion and two stages of multiple scales analysis are conducted to obtain analytical approximation for quasi-periodic oscillation envelopes and frequency-locking area near primary resonance. A parameter study shows that, in the absence or the presence of high-frequency excitation, time-delayed feedback may reduce significantly the amplitude and the envelopes of quasi-periodic oscillations leading to a quasi synchronization of the response over the whole frequency range around the resonance. The results presented for the parameters tested agree well with results obtained by numerical simulation.  相似文献   

13.
This paper has presented a new class of active and passive magnetic constrained layer damping (APMCLD) treatment for controlling vibration of three-layer clamped–clamped beams. Firstly, optimal placement strategies of discrete patches are investigated. The predictions of model are validated experimentally using three-layer clamped–clamped beams treated with fully or segmented passive magnetic constrained layer damping (MCLD) treatments. The results indicate that full MCLD treatment induces less improvement of damping characteristics. Also, the obtained results illustrate that, the improvement of damping performance using two-patched MCLD treatment becomes more apparent at the first mode compared to the corresponding performance using a single-patched MCLD treatment when the total length of damping layer is from 0.3L to 0.65L under considered magnetic force. Further, damping performances of APMCLD using several control strategies including simple PD controllers are investigated. The analytical results show that it induces less improvement of damping characteristics for higher modes using simple positive proportional feedback controllers whereas higher modes can been suppressed effectively using negative derivative feedback controllers. For broad band control of structural vibration, it is more effective using APMCLD treatments with combined proportional and derivative controllers. Moreover, the MCLD treatment still plays an important role in damping out structural vibrations even though active control systems fail.  相似文献   

14.
Twisted tape insert was applied as a swirling flow generator for the passive heat transfer enhancement in the present work. The influences of the perforated twisted tapes (PTs) on the heat transfer, pressure loss and thermal performance characteristics were investigated experimentally. The experiments were performed under uniform wall heat flux condition by using PTs with y/W?=?3, 4 and 5, d/W?=?0.11, 0.14 and 0.17 and s/W?=?0.4, 0.6 and 0.8 where y is a twist length, d is a perforation hole diameter, s is a spacing between holes (pitch) and W is a tape width. The experimental results reveal that Nusselt number increased with decreasing s/W and y/W and increasing d/W. For the present range, the maximum heat transfer was obtained by utilizing the tape with s/W?=?0.4, d/W?=?0.17 and y/W?=?3, which is higher than those obtained from the plain tube with and without typical twisted tape by around 27.4 and 86.7%, respectively. In addition, the empirical correlations for Nusselt number, friction factor and thermal performance are also proposed in the present paper.  相似文献   

15.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

16.
This work continues the calculation of the stress intensity factors, as a function of position s along the front of an arbitrary (kinked and curved) infinitesimal extension of some arbitrary crack on some three-dimensional body. More precisely, ε denoting a small parameter which the crack extension length is proportional to, what is studied here is the third term, proportional to εfn2 = ε and noted K (1) (s) ε, of the expansion of these stress intensity factors at the point s of the crack front in powers of ε. The novelties with respect to previous works due to Gao and Rice on the one hand and Nazarov on the other hand, are that both the original crack and its extension need not necessarily be planar, and that a kink (discontinuity of the tangent plane to the crack) can occur all along the original crack front. Two expressions of K (1) (s) are obtained; the difference is that the first one is more synthetic whereas the second one makes the influence of the kink angle (which can vary along the original crack front) more explicit. Application of some criterion then allows to obtain the apriori unknown geometric parameters of the small crack extension (length, kink angle, curvature parameters). The small scale segmentation of the crack front which is observed experimentally in the presence of mode III is disregarded here because a large scale point of view is adopted; this phenomenon will be discussed in a separate paper. It is shown how these results can be used to numerically predict crack paths over arbitrary distances in three dimensions. Simple applications to problems of configurational stability and bifurcation of the crack front are finally presented.  相似文献   

17.
拱形薄壳结构的减振降噪优化设计   总被引:1,自引:1,他引:0  
基于拱形薄壳结构的动力仿真, 提出结构振动噪音最小、满足重量约束的约束阻尼厚度优化
设计模型. 利用K-S函数得到结构的振动加速度级, 将其作为结构减振降噪效果的评定参数,
采用响应面方法拟合目标函数, 并对其进行误差检验, 适当缩小设计变量范围调整
误差后, 响应面曲线的拟合程度较好. 最后采用二次规划方法求解模型, 经过优化设计, 结构第一阶固
有频率增加22.97%, 振动加速度级值减小12.96%, 结构的性能得到了很大提高.  相似文献   

18.
We present a perturbation method for the analysis of single degree of freedom non-linear oscillation phenomena governed by an equation of motion containing a parameter ? which need not be small. The approach is to define a new parameter α = α(?) in such a way that asymptotic solutions in power series in α converge more quickly than do the standard perturbation expansions in power series in ?. Phenomena considered are free vibration of strongly non-linear conservative oscillators and steady state response of strongly non-linear oscillators subject to weak harmonic excitation.  相似文献   

19.
一种含负刚度元件的新型动力吸振器的参数优化   总被引:1,自引:0,他引:1  
提出了一种含有负刚度弹簧元件的新型动力吸振器模型,对该模型的最优参数进行了详细研究. 通过拉氏变换得到了系统的解析解,发现该系统存在着两个固定点,利用固定点理论得到了动力吸振器的最优阻尼比和最优频率比. 进一步研究发现接地刚度取负值时能够得到更好的减振效果,根据负刚度的特性得到了在保证系统稳定情况下的最优负刚度比. 通过数值解与解析解的对比证明了解析解的正确性. 通过与两种已有的典型动力吸振器模型在简谐激励和随机激励情况下的对比,说明了负刚度模型在主系统减振方面具有很大的优势,减振效果远优于两种已有动力吸振器模型,从而为设计新型动力吸振器模型提出了理论上的依据.   相似文献   

20.
Based on the fundamental solutions for transversely isotropic piezoelectric materials, the fundamental solutions of axisymmetric problems are derived by integration and explicit expressions for three possible cases of different characteristic roots and multiple roots are all presented. In the case of s1s2s3s1, based on the Greens functions for semi-infinite piezoelectric body and bimaterial infinite piezoelectric body, the Greens functions for axisymmetric problems of semi-infinite body and bimaterial infinite body are obtained. Taking PZT-4 as an example, numerical computations are conducted by use of the fundamental solutions to axisymmetric problems. Comparison of the calculated results with those of FEM shows good agreement between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号