首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Static problems for the elastic plates and rods periodically perforated by small holes of different shapes are solved using the asymptotic approach based on the combination of the asymptotic technique and the multi-scale homogenization method. Using the asymptotic homogenization method the original boundary-value problem is reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. The combination of the perturbation method and the technique of successive approximations is applied for the solution of the unit cell problems. Taking into the account small size of holes the method of perturbation of the shape of the boundary and the Schwarz alternating method are used. The problems of torsion of a rod with perforated cross-section; deflection of the perforated membrane loaded by a normal load; and bending of perforated plates with circular and square holes are considered consecutively. The error of the applied asymptotic techniques is estimated and the high accuracy of the obtained solutions is demonstrated.  相似文献   

2.
In this paper we consider the singular perturbation boundary-value problem of thefollowing coupling type system of convection-diffusion equationsWe advance two methods:the first one is the initial value solving method,by which theoriginal boundary-value problem is changed into a series of unperturbed initial-valueproblems of the first order ordinary differential equation or system so that an asymptoticexpansion is obtained;the second one is the boundary-value solving method,by which theoriginal problem is changed into a few boundary-value problems having no phenomenon ofboundary-layer so that the exact solution can be obtained and any classical numericalmethods can be used to obtain the numerical solution of consismethods can be used to obtainthe numerical solution of consistant high accuracy with respect to the perturbationparameterε  相似文献   

3.
For a second-order symmetric uniformly elliptic differential operator with rapidly oscillating coefficients, we study the asymptotic behavior of solutions of a mixed inhomogeneous boundary-value problem and a spectral Neumann problem in a thin perforated domain with rapidly varying thickness. We obtain asymptotic estimates for the differences between solutions of the original problems and the corresponding homogenized problems. These results were announced in Dopovidi Akademii Nauk Ukrainy, No. 10, 15–19 (1991). The new results obtained in the present paper are related to the construction of an asymptotic expansion of a solution of a mixed homogeneous boundary-value problem under additional assumptions of symmetry for the coefficients of the operator and for the thin perforated domain.  相似文献   

4.
The asymptotic behavior of the solution of the bending problem of plates with local shape perturbations (connections, ribs, holes comparable in size with the plate thickness) is studied in a three-dimensional formulation using the local perturbation method. The problem is completely decomposed into a two-dimensional problem of plate theory and local problems describing the threedimensional stress-strain state in the perturbation region. The local problems are solved using numerical methods.  相似文献   

5.
Andrea Bacigalupo 《Meccanica》2014,49(6):1407-1425
In this paper a second-order homogenization approach for periodic material is derived from an appropriate representation of the down-scaling that correlates the micro-displacement field to the macro-displacement field and the macro-strain tensors involving unknown perturbation functions. These functions take into account of the effects of the heterogeneities and are obtained by the solution of properly defined recursive cell problems. Moreover, the perturbation functions and therefore the micro-displacement fields result to be sufficiently regular to guarantee the anti-periodicity of the traction on the periodic unit cell. A generalization of the macro-homogeneity condition is obtained through an asymptotic expansion of the mean strain energy at the micro-scale in terms of the microstructural characteristic size ?; the obtained overall elastic moduli result to be not affected by the choice of periodic cell. The coupling between the macro- and micro-stress tensor in the periodic cell is deduced from an application of the generalised macro-homogeneity condition applied to a representative portion of the heterogeneous material (cluster of periodic cell). The correlation between the proposed asymptotic homogenization approach and the computational second-order homogenization methods (which are based on the so called quadratic ansätze) is obtained through an approximation of the macro-displacement field based on a second-order Taylor expansion. The form of the overall elastic moduli obtained through the two homogenization approaches, here proposed, is analyzed and the differences are highlighted. An evaluation of the developed method in comparison with other recently proposed in literature is carried out in the example where a three-phase orthotropic material is considered. The characteristic lengths of the second-order equivalent continuum are obtained by both the asymptotic and the computational procedures here analyzed. The reliability of the proposed approach is evaluated for the case of shear and extensional deformation of the considered two-dimensional infinite elastic medium subjected to periodic body forces; the results from the second-order model are compared with those of the heterogeneous continuum.  相似文献   

6.
由于订型分布孔的存在,通常的有限元法不能有效地分析多孔板的弯曲问题。该文基于均匀化理论建立了该类问题的新解法。对含密集型分布的阶梯型圆孔板的分析结果,说明了该文方法是有效的。  相似文献   

7.
A family of one-dimensional (1D) elliptic boundary-value problems with periodic and rapidly-oscillating piecewise-smooth coefficients is considered. The coefficients depend on the local or fast variables corresponding to two different structural scales. A finite number of imperfect contact conditions are analyzed at each of the scales. The reiterated homogenization method (RHM) is used to construct a formal asymptotic solution. The homogenized problem, the local problems, and the corresponding effective coefficients are obtained. A variational formulation is derived to obtain an estimate to prove the proximity between the solutions of the original problem and the homogenized problem. Numerical computations are used to illustrate both the convergence of the solutions and the gain of the effective properties of a three-scale heterogeneous 1D laminate with respect to their two-scale counterparts. The theoretical and practical ideas exposed here could be used to mathematically model multidimensional problems involving multiscale composite materials with imperfect contact at the interfaces.  相似文献   

8.
圆板在物体撞击下的非线性动力响应   总被引:6,自引:0,他引:6  
本文在Von Kármán大位移的意义上,利用虚位移原理伽辽金方法建立了圆板在物体撞击下的非线性动力响应的控制微分方程,在研究响应问题时,考虑了冲击载荷与圆板位移响应之间的耦合影响,文中使用时间增量法和奇异摄动理论求解问题的控制方程,获得了固支圆板非线性动力响应的近似解,并且求解了具体算例,绘出了圆板位移、应力响应曲线以及冲击力随时间的变化曲线。  相似文献   

9.
It was noted long ago [1] that the material strength theory develops both by improving computational methods and by widening the physical foundations. In the present paper, we develop a computational technique based on asymptotic methods, first of all, on the homogenization method [2, 3]. A modification of the homogenization method for plates periodic in the horizontal projection was proposed in [4], where the bending of a homogeneous plate with periodically repeating inhomogeneities on its surface was studied. A more detailed asymptotic analysis of elastic plates periodic in the horizontal projection can be found, e.g., in [5, 6]. In [6], three asymptotic approximations were considered, local problems on the periodicity cell were obtained for them, and the solvability of these problems was proved. In [7], it was shown that the techniques developed for plates periodic in the horizontal projection can also be used for laminated plates. In [7], this was illustrated by an example of asymptotic analysis of an isotropic plate symmetric with respect to the midplane.  相似文献   

10.
Owing to the existence of distributed holes, it is difficult to solve the bending problem of perforated plates by the conventional finite element method. A homogenization-based method for this problem is presented in this paper. As an example, the bending analysis of a circular perforated plate with distributed step-wise cylindrical holes is made. The deflection and the fundamental frequency obtained by present method are in good agreement with experimental data, this implies that the method is effective. This project is supported by the National Natural Science Foundation (19602007) and National Outstanding Youth Foundation (19525206).  相似文献   

11.
复合材料应力分析的均匀化方法   总被引:29,自引:2,他引:29  
刘书田  程耿东 《力学学报》1997,29(3):306-313
建立了基于均匀化理论的确定复合材料结构应力场的方法.其实质是用均质的宏观结构和非均质的具有周期性分布的细观结构描述原结构;将力学量表示成关于宏观坐标和细观坐标的函数,并用细观和宏观两种尺度之比为小参数展开,用摄动技术将原问题化为一细观均匀化问题和一宏观均匀化问题.这两个问题的解确定了包含等效位移和一阶近似位移的位移场,由此获得应力场.利用该方法给出了圆柱形孔隙材料和单向纤维复合材料在单向拉伸时的应力场以及空隙材料简支梁的局部应力场,说明了该方法的有效性  相似文献   

12.
We propose an asymptotic approach for evaluating effective elastic properties of two-components periodic composite materials with fibrous inclusions. We start with a nontrivial expansion of the input elastic boundary value problem by ratios of elastic constants. This allows to simplify the governing equations to forms analogous to the transport problem. Then we apply an asymptotic homogenization method, coming from the original problem on a multi-connected domain to a so called cell problem, defined on a characterizing unit cell of the composite. If the inclusions' volume fraction tends to zero, the cell problem is solved by means of a boundary perturbation approach. When on the contrary the inclusions tend to touch each other we use an asymptotic expansion by non-dimensional distance between two neighbouring inclusions. Finally, the obtained “limiting” solutions are matched via two-point Padé approximants. As the results, we derive uniform analytical representations for effective elastic properties. Also local distributions of physical fields may be calculated. In some partial cases the proposed approach gives a possibility to establish a direct analogy between evaluations of effective elastic moduli and transport coefficients. As illustrative examples we consider transversally-orthotropic composite materials with fibres of square cross section and with square checkerboard structure. The obtained results are in good agreement with data of other authors.  相似文献   

13.
This paper describes the method for solving the problems of linear viscoelasticity for thin plates under the influence of bending moments and transverse forces. The small parameter method was used to reduce the original problem to a sequence of boundary-value problems solved via complex potentials of the bending theory of multiply connected anisotropic plates. The general representations of complex potentials and boundary conditions for their determination are obtained. The method for determining the stress state of the plate at any time with respect to complex approximation potentials is developed by replacing the powers of the small parameter by the Rabotnov operators. The problem of a plate with elliptical holes is solved. The numerical calculation results in the case of a plate with one or two holes are given. The variation of bending moments in time until stationary condition is reached is studied, and the influence of geometric characteristics of the plate on these variable is described.  相似文献   

14.
The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic-matrix fibrous composites with square-lattice reinforcement and their effective properties. The correspondence principle allows transformation of the governing boundary value problems to quasi-static ones. Thereafter, the homogenization procedure is used. To solve the cell problem, modified boundary shape perturbation procedure is proposed. The resulting Laplace transforms are inverted by the effective and accurate Gaver algorithm. The proposed approach, however, yields a computationally intense solution.  相似文献   

15.
圆板在物体撞击下的非线性动力响应   总被引:7,自引:0,他引:7  
邓梁波  叶天麒 《力学学报》1990,22(4):420-428
本文在Von Kármán大位移的意义上,利用虚位移原理伽辽金方法建立了圆板在物体撞击下的非线性动力响应的控制微分方程,在研究响应问题时,考虑了冲击载荷与圆板位移响应之间的耦合影响,文中使用时间增量法和奇异摄动理论求解问题的控制方程,获得了固支圆板非线性动力响应的近似解,并且求解了具体算例,绘出了圆板位移、应力响应曲线以及冲击力随时间的变化曲线。  相似文献   

16.
The present paper develops and implements finite element formulation for the asymptotic homogenization theory for periodic composite plate and shell structures, earlier developed in  and , and thus adopts this analytical method for the analysis of periodic inhomogeneous plates and shells with more complicated periodic microstructures. It provides a benchmark test platform for evaluating various methods such as representative volume approaches to calculate effective properties. Furthermore, the new numerical implementation (Cheng et al., 2013) of asymptotic homogenization method of 2D and 3D materials with periodic microstructure is shown to be directly applicable to predict effective properties of periodic plates without any complicated mathematical derivation. The new numerical implementation is based on the rigorous mathematical foundation of the asymptotic homogenization method, and also simplicity similar to the representative volume method. It can be applied easily using commercial software as a black box. Different kinds of elements and modeling techniques available in commercial software can be used to discretize the unit cell. Several numerical examples are given to demonstrate the validity of the proposed methods.  相似文献   

17.
In this paper, the mathematical problem of weak non-Newtonian fluid two-phase flow through porous media, including the effect of capillary pressure, is solved by singular perturbation method in combination with regular perturbation method. The asymptotic analytical solutions of the fractional flow function and the wetting phase saturation are obtained. The results are verified by numerical calculations and by classical solutions for corresponding Newtonian case. The influences of the non-Newtonian exponent and capillary pressure are discussed.  相似文献   

18.
This study concerns the local character of the elastostatic field in plane strain near a point that separates a free from an adjoining fixed segment of a rectilinear boundary-component. The well-known singular field behavior predicted by the linear theory, as such a point is approached, exhibits oscillatory deformations and stresses. It is shown here by means of an asymptotic analysis that the foregoing anomalous behavior does not occur within the nonlinear theory of harmonic elastic materials. In preparation for this task certain general aspects of the latter theory are reviewed. The results obtained in the nonlinear asymptotic treatment of the class of mixed boundary-value problems considered are discussed in detail with particular attention to the problem of a bonded flat-ended rigid punch.  相似文献   

19.
The main result of the paper is a general convergence theorem for the viscosity solutions of singular perturbation problems for fully nonlinear degenerate parabolic PDEs (partial differential equations) with highly oscillating initial data. It substantially generalizes some results obtained previously in [2]. Under the only assumptions that the Hamiltonian is ergodic and stabilizing in a suitable sense, the solutions are proved to converge in a relaxed sense to the solution of a limit Cauchy problem with appropriate effective Hamiltonian and initial data. In its formulation, our convergence result is analogous to the stability property of Barles and Perthame. It should thus reveal a useful tool for studying general singular perturbation problems by viscosity solutions techniques. A detailed exposition of ergodicity and stabilization is given, with many examples. Applications to homogenization and averaging are also discussed.  相似文献   

20.
An analysis for the nonlinear bendings of unsymmetrically layered anisotropic rectangular plates subjected to combined edge tensions and lateral loading under verious supports is presented. The uniformly valid N-order asymptotic solutions of the transverse deflection and stress function are derived by the singular perturbation method offered in [1]. The present investigation may provide a simple and convenient method for such a complex problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号