首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mosquito vectors of malaria in Southeast Asia readily feed outdoors making malaria control through indoor insecticides such as long-lasting insecticidal nets (LLINs) and indoor residual spraying more difficult. Topical insect repellents may be able to protect users from outdoor biting, thereby providing additional protection above the current best practice of LLINs.

Methods and Findings

A double blind, household randomised, placebo-controlled trial of insect repellent to reduce malaria was carried out in southern Lao PDR to determine whether the use of repellent and long-lasting insecticidal nets (LLINs) could reduce malaria more than LLINs alone. A total of 1,597 households, including 7,979 participants, were recruited in June 2009 and April 2010. Equal group allocation, stratified by village, was used to randomise 795 households to a 15% DEET lotion and the remainder were given a placebo lotion. Participants, field staff and data analysts were blinded to the group assignment until data analysis had been completed. All households received new LLINs. Participants were asked to apply their lotion to exposed skin every evening and sleep under the LLINs each night. Plasmodium falciparum and P. vivax cases were actively identified by monthly rapid diagnostic tests. Intention to treat analysis found no effect from the use of repellent on malaria incidence (hazard ratio: 1.00, 95% CI: 0.99–1.01, p = 0.868). A higher socio-economic score was found to significantly decrease malaria risk (hazard ratio: 0.72, 95% CI: 0.58–0.90, p = 0.004). Women were also found to have a reduced risk of infection (hazard ratio: 0.59, 95% CI: 0.37–0.92, p = 0.020). According to protocol analysis which excluded participants using the lotions less than 90% of the time found similar results with no effect from the use of repellent.

Conclusions

This randomised controlled trial suggests that topical repellents are not a suitable intervention in addition to LLINs against malaria amongst agricultural populations in southern Lao PDR. These results are also likely to be applicable to much of the Greater Mekong Sub-region.

Trial Registration

This trial is registered with number NCT00938379  相似文献   

2.

Background

The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010.

Methods and Findings

Longitudinal samplings of malaria parasite prevalence in asymptomatic school children and vector abundance in randomly selected houses were undertaken monthly from February 2002. ITN ownership and usage surveys were conducted annually from 2004 to 2010. Asymptomatic malaria parasite prevalence and vector abundances gradually decreased in all three sites from 2002 to 2006, and parasite prevalence reached its lowest level from late 2006 to early 2007. The abundance of the major malaria vectors, Anopheles funestus and An. gambiae, increased about 5–10 folds in all study sites after 2007. However, the resurgence of vectors was highly variable between sites and species. By 2010, asymptomatic parasite prevalence in Kombewa had resurged to levels recorded in 2004/2005, but the resurgence was smaller in magnitude in the other sites. Household ITN ownership was at 50–70% in 2009, but the functional and effective bed net coverage in the population was estimated at 40.3%, 49.4% and 28.2% in 2010 in Iguhu, Kombewa, and Marani, respectively.

Conclusion

The resurgence in parasite prevalence and malaria vectors has been observed in two out of three sentinel sites in western Kenya despite a high ownership of ITNs. The likely factors contributing to malaria resurgence include reduced efficacy of ITNs, insecticide resistance in mosquitoes and lack of proper use of ITNs. These factors should be targeted to avoid further resurgence of malaria transmission.  相似文献   

3.

Background

One of the best ways to prevent malaria is the use of insecticide-treated bed nets. Manufacturers pursue easier, safer and more efficient nets. Hence, many studies on the efficacy and wash resistance using World Health Organization standards have been reported. The commonly used detergent is “Savon de Marseille”, because it closely resembles actually used soaps. At the 54th Collaborative International Pesticides Analytical Council (CIPAC) Technical Meeting in 2010, it was suggested to replace it by a standardized “CIPAC washing agent”. The aim of this study was to investigate the difference between a laboratory hand washing simulation using the CIPAC washing agent (method-1) and a domestic washing (method-2) on different bed nets, as well as the effect of the drying process on the release of active ingredient.

Methods

Interceptor®, Permanet®2.0 and Netprotect® nets were used in three treatments, each repeated 20 times. The first treatment included method-1 washing and indoor drying. The second treatment included method-2 washing and indoor drying. The third treatment used method-2 washing and UV-drying. The residual insecticide contents were determined using gas chromatography.

Results

The washing procedure and the number of washes have a significant effect on the release of active ingredient. Statistically, the two washing methods have the same effect on removing the active ingredient from the Interceptor® and Permanet®2.0 net, but a significantly different influence on the Netprotect® nets. The drying process has no significant effect on the insecticide.

Conclusion

Both washing procedures affected the amount of insecticide remaining on nets independently of the impregnation technology. The active ingredient decreases with the number of washing cycles following an exponential or logarithmic model for coated nets. The laboratory hand washing simulation had more impact on the decrease of active ingredient content of the Netprotect® nets. All net types seemed to be effectively protected against UV-light.  相似文献   

4.

Background

Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms.

Methodology/Principal Findings

Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance.

Conclusion

The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management.  相似文献   

5.
Objective To determine the effectiveness in reducing malaria of combining an insect repellent with insecticide treated bed nets compared with the nets alone in an area where vector mosquitoes feed in the early evening.Design A double blind, placebo controlled cluster-randomised clinical study.Setting Rural villages and peri-urban districts in the Bolivian Amazon.Participants 4008 individuals in 860 households.Interventions All individuals slept under treated nets; one group also used a plant based insect repellent each evening, a second group used placebo.Main outcome measure Episodes of Plasmodium falciparum or P vivax malaria confirmed by rapid diagnostic test or blood slide, respectively.Results We analysed 15 174 person months at risk and found a highly significant 80% reduction in episodes of P vivax in the group that used treated nets and repellent (incidence rate ratio 0.20, 95% confidence interval 0.11 to 0.38, P<0.001). Numbers of P falciparum cases during the study were small and, after adjustment for age, an 82% protective effect was observed, although this was not significant (0.18, 0.02 to 1.40, P=0.10). Reported episodes of fever with any cause were reduced by 58% in the group that used repellent (0.42, 0.31 to 0.56, P<0.001).Conclusions Insect repellents can provide protection against malaria. In areas where vectors feed in the early evening, effectiveness of treated nets can be significantly increased by using repellent between dusk and bedtime. This has important implications in malaria vector control programmes outside Africa and shows that the combined use of treated nets and insect repellents, as advocated for most tourists travelling to high risk areas, is fully justified.Registration NCT 00144716.  相似文献   

6.

Background

Insecticide-treated nets (ITNs) are an integral part of vector control recommendations for malaria elimination in China. This study investigated the extent to which bed nets were used and which factors influence bed net use among Jinuo Ethnic Minority in China-Myanmar-Laos border areas.

Methods and Findings

This study combined a quantitative household questionnaire survey and qualitative semi-structured in-depth interviews (SDI). Questionnaires were administered to 352 heads of households. SDIs were given to 20 key informants. The bed net to person ratio was 1∶2.1 (i.e., nearly one net for every two people), however only 169 (48.0%) households owned at least one net and 623 (47.2%) residents slept under bed nets the prior night. The percentages of residents who regularly slept under nets (RSUN) and slept under nets the prior night (SUNPN) were similar (48.0% vs. 47.2%, P>0.05), however the percentage correct use of nets (CUN) was significantly lower (34.5%, P<0.0001). The annual cash income per person (ACIP) was an independent factor that influenced bed net use (P<0.0001), where families with an ACIP of CNY10000 or more were much more likely to use nets. House type was strongly associated with bed net use (OR: 4.71, 95% CI: 2.81, 7.91; P<0.0001), where those with traditional wood walls and terracotta roofs were significantly more likely to use nets, and the head of household''s knowledge was an independent factor (OR: 5.04, 95% CI: 2.72, 9.35; P<0.0001), where those who knew bed nets prevent malaria were significantly more likely to use nets too.

Conclusions

High bed net availability does not necessarily mean higher coverage or bed net use. Household income, house type and knowledge of the ability of bed nets to prevent malaria are all independent factors that influence bed net use among Jinuo Ethnic Minority.  相似文献   

7.

Introduction

As Plasmodium falciparum prevalence decreases in many parts of Sub-Saharan Africa, so does immunity resulting in larger at risk populations and increased risk of malaria resurgence. In Bissau, malaria prevalence decreased from ∼50% to 3% between 1995 and 2003. The epidemiological characteristics of P. falciparum malaria within Bandim health and demographic surveillance site (population ∼100000) between 1995 and 2012 are described.

Methods and Findings

The population was determined by census. 3603 children aged <15 years that were enrolled in clinical trials at the Bandim health centre (1995–2012) were considered incident cases. The mean annual malaria incidence per thousand children in 1995–1997, 1999–2003, 2007, 2011, 2012 were as follows; age <5 years 22→29→4→9→3, age 5–9 years 15→28→4→33→12, age 10–14 years 9→15→1→45→19. There were 4 campaigns (2003–2010) to increase use of insecticide treated bed nets (ITN) amongst children <5 years. An efficacious high-dose chloroquine treatment regime was routinely used until artemisinin based combination therapy (ACT) was introduced in 2008. Long lasting insecticide treated bed nets (LLIN) were distributed in 2011. By 2012 there was 1 net per 2 people and 97% usage. All-cause mortality decreased from post-war peaks in 1999 until 2012 in all age groups and was not negatively affected by malaria resurgence.

Conclusion

The cause of decreasing malaria incidence (1995–2007) was probably multifactorial and coincident with the use of an efficacious high-dose chloroquine treatment regime. Decreasing malaria prevalence created a susceptible group of older children in which malaria resurged, highlighting the need to include all age groups in malaria interventions. ACT did not hinder malaria resurgence. Mass distribution of LLINs probably curtailed malaria epidemics. All-cause mortality was not negatively affected by malaria resurgence.  相似文献   

8.

Background

Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia.

Methods

Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance.

Results

Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed.

Conclusion

High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors, evaluate the effectiveness of existing interventions and develop appropriate resistance management strategies.  相似文献   

9.

Introduction

High coverage of conventional and long-lasting insecticide treated nets (ITNs and LLINs) in parts of E Africa are associated with reductions in local malaria burdens. Shifts in malaria vector species ratio have coincided with the scale-up suggesting that some species are being controlled by ITNs/LLINs better than others.

Methods

Between 2005–2006 six experimental hut trials of ITNs and LLINs were conducted in parallel at two field stations in northeastern Tanzania; the first station was in Lower Moshi Rice Irrigation Zone, an area where An. arabiensis predominates, and the second was in coastal Muheza, where An. gambiae and An. funestus predominate. Five pyrethroids and one carbamate insecticide were evaluated on nets in terms of insecticide-induced mortality, blood-feeding inhibition and exiting rates.

Results

In the experimental hut trials mortality of An. arabiensis was consistently lower than that of An. gambiae and An. funestus. The mortality rates in trials with pyrethroid-treated nets ranged from 25–52% for An. arabiensis, 63–88% for An. gambiae s.s. and 53–78% for An. funestus. All pyrethroid-treated nets provided considerable protection for the occupants, despite being deliberately holed, with blood-feeding inhibition (percentage reduction in biting rates) being consistent between species. Veranda exiting rates did not differ between species. Percentage mortality of mosquitoes tested in cone bioassays on netting was similar for An. gambiae and An. arabiensis.

Conclusions

LLINs and ITNs treated with pyrethroids were more effective at killing An. gambiae and An. funestus than An. arabiensis. This could be a major contributing factor to the species shifts observed in East Africa following scale up of LLINs. With continued expansion of LLIN coverage in Africa An. arabiensis is likely to remain responsible for residual malaria transmission, and species shifts might be reported over larger areas. Supplementary control measures to LLINs may be necessary to control this vector species.  相似文献   

10.

Background

The association between placental malaria (PM) and first peripheral parasitaemias in early infancy was assessed in Tori Bossito, a rural area of Benin with a careful attention on transmission factors at an individual level.

Methodology

Statistical analysis was performed on 550 infants followed weekly from birth to 12 months. Malaria transmission was assessed by anopheles human landing catches every 6 weeks in 36 sampling houses and season defined by rainfall. Each child was located by GPS and assigned to the closest anopheles sampling house. Data were analysed by survival Cox models, stratified on the possession of insecticide-treated mosquito nets (ITNs) at enrolment.

Principal Findings

Among infants sleeping in a house with an ITN, PM was found to be highly associated to first malaria infections, after adjusting on season, number of anopheles, antenatal care (ANC) visits and maternal severe anaemia. Infants born from a malaria infected placenta had a 2.13 fold increased risk to present a first malaria infection than those born from a non infected placenta ([1.24–3.67], p<0.01) when sleeping in a house with an ITN. The risk to present a first malaria infection was increased by 3.2 to 6.5, according to the level of anopheles exposure (moderate or high levels, compared to the absence of anopheles).

Conclusions

First malaria infections in early childhood can be attributed simultaneously to both PM and high levels of exposure to infected anopheles. Protective measures as Intermittent Preventive Treatment during pregnancy (IPTp) and ITNs, targeted on both mothers and infants should be reinforced, as well as the research on new drugs and insecticides. In parallel, investigations on placental malaria have to be strengthened to better understand the mechanisms involved, and thus to protect adequately the infants high risk group.  相似文献   

11.

Background

Increasing the distribution and use of insecticide-treated nets (ITNs) in Sub-Saharan Africa has made controlling malaria with ITNs more practical. We evaluated community effects induced by ITNs, specifically long-lasting insecticidal nets (LLINs), under ordinary conditions in an endemic malaria area of Western Kenya.

Methods

Using the database from Mbita Health and Demographic Surveillance System (HDSS), children younger than 5 years old were assessed over four survey periods. We analyzed the effect of bed net usage, LLIN density and population density of young people around a child on all-cause child mortality (ACCM) rates using Cox PH models.

Results

During the study, 14,554 children were followed and 250 deaths were recorded. The adjusted hazard ratios (HRs) for LLIN usage compared with no net usage were not significant among the models: 1.08 (95%CI 0.76–1.52), 1.19 (95%CI 0.69–2.08) and 0.92 (95%CI 0.42–2.02) for LLIN users, untreated net users, and any net users, respectively. A significant increasing linear trend in risk across LLIN density quartiles (HR = 1.25; 95%CI 1.03–1.51) and a decreasing linear trend in risk across young population density quartiles among non-net user children (HR = 0.77; 95%CI 0.63–0.94) were observed.

Conclusions

Although our data showed that current LLIN coverage level (about 35%) could induce a community effect to protect children sleeping without bed nets even in a malaria-endemic area, it appears that a better system is needed to monitor the current malaria situation globally in order to optimize malaria control programs with limited resources.  相似文献   

12.

Background

Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN) in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF), an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen.

Method

The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone) and a LN with pyriproxyfen alone (PPF LN). Laboratory tunnel tests were performed to substantiate the findings in the experimental huts.

Results

Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01). Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001). The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets.

Conclusion

Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by preventing further selection of pyrethroid resistant phenotypes.  相似文献   

13.

Background

There have been resurgent efforts in Africa to estimate the public health impact of malaria control interventions such as insecticide treated nets (ITNs) following substantial investments in scaling-up coverage in the last five years. Little is known, however, on the effectiveness of ITN in areas of Africa that support low transmission. This hinders the accurate estimation of impact of ITN use on disease burden and its cost-effectiveness in low transmission settings.

Methods and Principal Findings

Using a stratified two-stage cluster sample design, four cross-sectional studies were undertaken between March-June 2007 across three livelihood groups in an area of low intensity malaria transmission in South Central Somalia. Information on bed net use; age; and sex of all participants were recorded. A finger prick blood sample was taken from participants to examine for parasitaemia. Mantel-Haenzel methods were used to measure the effect of net use on parasitaemia adjusting for livelihood; age; and sex. A total of 10,587 individuals of all ages were seen of which 10,359 provided full information. Overall net use and parasite prevalence were 12.4% and 15.7% respectively. Age-specific protective effectiveness (PE) of bed net ranged from 39% among <5 years to 72% among 5–14 years old. Overall PE of bed nets was 54% (95% confidence interval 44%–63%) after adjusting for livelihood; sex; and age.

Conclusions and Significance

Bed nets confer high protection against parasite infection in South Central Somalia. In such areas where baseline transmission is low, however, the absolute reductions in parasitaemia due to wide-scale net use will be relatively small raising questions on the cost-effectiveness of covering millions of people living in such settings in Africa with nets. Further understanding of the progress of disease upon infection against the cost of averting its consequent burden in low transmission areas of Africa is therefore required.  相似文献   

14.

Introduction

DDT is considered to be the most cost-effective insecticide for combating malaria. However, it is also the most environmentally persistent and can pose risks to human health when sprayed indoors. Therefore, the use of DDT for vector control remains controversial.

Methods

In this paper we develop a computer-based simulation model to assess some of the costs and benefits of the continued use of DDT for Indoor Residual Spraying (IRS) versus its rapid phase out. We apply the prototype model to the aggregated sub Saharan African region. For putting the question about the continued use of DDT for IRS versus its rapid phase out into perspective we calculate the same costs and benefits for alternative combinations of integrated vector management interventions.

Results

Our simulation results confirm that the current mix of integrated vector management interventions with DDT as the main insecticide is cheaper than the same mix with alternative insecticides when only direct costs are considered. However, combinations with a stronger focus on insecticide-treated bed nets and environmental management show higher levels of cost-effectiveness than interventions with a focus on IRS. Thus, this focus would also allow phasing out DDT in a cost-effective manner. Although a rapid phase out of DDT for IRS is the most expensive of the tested intervention combinations it can have important economic benefits in addition to health and environmental impacts that are difficult to assess in monetary terms. Those economic benefits captured by the model include the avoided risk of losses in agricultural exports.

Conclusions

The prototype simulation model illustrates how a computer-based scenario analysis tool can inform debates on malaria control policies in general and on the continued use of DDT for IRS versus its rapid phase out in specific. Simulation models create systematic mechanisms for analyzing alternative interventions and making informed trade offs.  相似文献   

15.

Background

Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes.

Methodology/Findings

A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days).

Conclusions/Significance

Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.  相似文献   

16.

Introduction

Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis.

Methods

MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results

Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion

There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.  相似文献   

17.

Background

New approaches to delivering insecticides need to be developed to improve malaria vector control. Insecticidal durable wall lining (DL) and net wall hangings (NWH) are novel alternatives to indoor residual spraying which can be produced in a long-lasting format. Non-pyrethroid versions could be used in combination with long-lasting insecticidal nets for improved control and management of insecticide resistant vector populations.

Methods

Experimental hut trials were carried out in Valley du Kou, Burkina Faso to evaluate the efficacy of pirimiphos methyl treated DL and NWH either alone or in combination with LLINs against pyrethroid resistant Anopheles gambiae ss. Comparison was made with pyrethroid DL. Mosquitoes were genotyped for kdr and ace-1R resistant genes to investigate the insecticide resistance management potential of the combination.

Results

The overall kdr and ace-1R allele frequencies were 0.95 and 0.01 respectively. Mortality with p-methyl DL and NWH alone was higher than with pyrethroid DL alone (>95% vs 40%; P<0.001). Combining pyrethroid DL with LLINs did not show improvement in mortality (48%) compared to the LLIN alone (44%) (P>0.1). Combining p-methyl DL or NWH with LLINs reduced biting rates significantly (8–9%) compared to p-methyl DL and NWH alone (>40%) and killed all An gambiae that entered the huts. Mosquitoes bearing the ace-1R gene were more likely to survive in huts with p-methyl DL alone (p<0.03) whereas all resistant and susceptible genotypes were killed by the combination.

Conclusion

P-methyl DL and NWH outperformed pyrethroid DL. Combining p-methyl DL and NWH with LLINs could provide significant epidemiological benefits against a vector population which is resistant to pyrethroids but susceptible to organophosphates. There was evidence that the single intervention would select kdr and ace-1R resistance genes and the combination intervention might select less strongly. Technology to bind organophosphates to plastic wall lining would be worth developing.  相似文献   

18.

Background

Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes.

Methods and Findings

We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization–recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I 2 varied from 95% to 100%).

Conclusions

This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies'' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes. Please see later in the article for the Editors'' Summary  相似文献   

19.

Background

During an entomological survey in preparation for malaria control interventions in Mwea division, the number of malaria cases at the Kimbimbi sub-district hospital was in a steady decline. The underlying factors for this reduction were unknown and needed to be identified before any malaria intervention tools were deployed in the area. We therefore set out to investigate the potential factors that could have contributed to the decline of malaria cases in the hospital by analyzing the malaria control knowledge, attitudes and practices (KAP) that the residents in Mwea applied in an integrated fashion, also known as integrated malaria management (IMM).

Methods

Integrated Malaria Management was assessed among community members of Mwea division, central Kenya using KAP survey. The KAP study evaluated community members'' malaria disease management practices at the home and hospitals, personal protection measures used at the household level and malaria transmission prevention methods relating to vector control. Concurrently, we also passively examined the prevalence of malaria parasite infection via outpatient admission records at the major referral hospital in the area. In addition we studied the mosquito vector population dynamics, the malaria sporozoite infection status and entomological inoculation rates (EIR) over an 8 month period in 6 villages to determine the risk of malaria transmission in the entire division.

Results

A total of 389 households in Mwea division were interviewed in the KAP study while 90 houses were surveyed in the entomological study. Ninety eight percent of the households knew about malaria disease while approximately 70% of households knew its symptoms and methods to manage it. Ninety seven percent of the interviewed households went to a health center for malaria diagnosis and treatment. Similarly a higher proportion (81%) used anti-malarial medicines bought from local pharmacies. Almost 90% of households reported owning and using an insecticide treated bed net and 81% reported buying the nets within the last 5 years. The community also used mosquito reduction measures including, in order of preference, environmental management (35%), mosquito repellent and smoke (31%) insecticide canister sprays (11%), and window and door screens (6%). These methods used by the community comprise an integrated malaria management (IMM) package. Over the last 4 years prior to this study, the malaria cases in the community hospital reduced from about 40% in 2000 to less than 10% by 2004 and by the year 2007 malaria cases decreased to zero. In addition, a one time cross-sectional malaria parasite survey detected no Plasmodium infection in 300 primary school children in the area. Mosquito vector populations were variable in the six villages but were generally lower in villages that did not engage in irrigation activities. The malaria risk as estimated by EIR remained low and varied by village and proximity to irrigation areas. The average EIR in the area was estimated at 0.011 infectious bites per person per day.

Conclusions

The usage of a combination of malaria control tools in an integrated fashion by residents of Mwea division might have influenced the decreased malaria cases in the district hospital and in the school children. A vigorous campaign emphasizing IMM should be adopted and expanded in Mwea division and in other areas with different eco-epidemiological patterns of malaria transmission. With sustained implementation and support from community members integrated malaria management can reduce malaria significantly in affected communities in Africa.  相似文献   

20.

Introduction

Pesticide poisoning is an important public health problem worldwide. The study aimed to determine the risk of all-cause and cause-specific inpatient mortality and to identify prognostic factors for inpatient mortality associated with unintentional insecticide and herbicide pesticide poisonings.

Methods

We performed a retrospective cohort study of 3,986 inpatients recruited at hospitalization between 1999 and 2008 in Taiwan. We used the International Classification of Disease, 9th ed., Clinical Modification external causes of injury codes to classify poisoning agents into accidental poisoning by insecticides and herbicides. Comparisons in mortality rates were made between insecticide poisoning patients and herbicide poisoning patients by using the Cox proportional hazards models to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs).

Results

There were 168 deaths during 21,583 person-days of follow-up evaluation (7.8 per 1,000 person-days). The major causes of mortality for insecticide poisonings were the toxic effect of organophosphate and coma, and the major causes of mortality for herbicide poisonings were the toxic effect of other pesticides and the toxic effect of organophosphate. The mortality for herbicide exposure was fourfold higher than that for insecticide exposure. The factors associated with inpatient mortality were herbicide poisonings (HR = 4.58, 95% CI 3.29 to 6.37) and receiving mechanical ventilation treatment (HR = 3.85, 95% CI 2.73 to 5.42).

Conclusions

We demonstrated that herbicides stand out as the dominant agent for poisoning-related fatalities. The control of and limiting access to herbicide agents and developing appropriate therapeutic regimens, including emergency care, should be priorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号