首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
目的建立快速检测沙门菌、变形杆菌和金黄色葡萄球菌的多重聚合酶链反应(PCR)方法。方法本研究依据沙门菌侵袭基因正调节蛋白(hilA)基因、变形杆菌溶血素(hpmA)基因和金黄色葡萄球菌特异性pSa-442序列,运用Primer Premier 5.0分别设计3对特异性引物,预计PCR扩增的目的基因片段分别为为580bp、401 bp、256 bp。通过对单管多重PCR扩增的特异性、敏感性分析以及建立L16(43)正交试验对单管多重PCR扩增条件如引物浓度、dNTP浓度和Tm值等的优化,建立了快速同时检测3种食源性致病菌的单管多重PCR方法。结果该方法检测的灵敏度分别为:94.07 pg沙门菌DNA,140.85 ng变形杆菌DNA,1.41 ng金黄色葡萄球菌DNA。模拟检测食品中的混合3种菌,4 h培养后样品的最低检测限度分别为:沙门菌100菌落形成单位(CFU)/mL、变形杆菌101CFU/mL、金黄色葡萄球菌100CFU/mL。结论该方法特异性和灵敏度高,检验周期短,可用于对食品中多种致病菌的快速诊检和监控。  相似文献   

2.
目的建立一种能同时检测金黄色葡萄球菌、产单核李斯特菌和沙门菌3种致病菌的多重PCR检测方法。方法采用LB培养液对金黄色葡萄球菌、产单核李斯特菌和沙门菌标准菌株进行增菌。根据金黄色葡萄球菌的nuc基因、产单核李斯特氏菌的hlvA基因、沙门氏菌的invA基因设计引物,通过多重聚合酶链反应(PCR)对上述3种食源性致病菌的目的基因进行扩增,同时对反应体系进行优化。结果对平均浓度为5cfu/ml的金黄色葡萄球菌、产单核李斯特菌和沙门氏菌在LB培养液中进行8h振荡培养,可以检出阳性结果;把金黄色葡萄球菌、产单核李斯特菌、沙门菌、志贺菌、蜡样芽孢杆菌、大肠埃希菌0157、阪崎肠杆菌7种菌混合在一起提取混合基因组DNA进行PCR扩增,显示出很好的特异性结果。结论建立的多重PCR检测方法适用于金黄色葡萄球菌、产单核李斯特菌和沙门菌的快速检测,具有快速、简便、灵敏的特点,可广泛应用于食品卫生检测、食物中毒应急处理和临床检验等领域。  相似文献   

3.
张敬平  吴家林  肖勇  凌霞 《检验医学》2008,23(6):642-645
目的建立快速同时检测沙门菌、志贺菌和副溶血弧菌的多重聚合酶链反应(PCR)技术。方法根据沙门菌hilA基因、志贺菌ipaH基因及副溶血性弧菌tdh基因序列设计引物,进行PCR扩增及电泳检测。同时优化反应体系,测定特异性和灵敏度。结果该多重PCR技术能在8h内同时检测3种目的菌,通过检测其他9种常见食源性致病菌,结果表明该方法特异性好,多重PCR检测灵敏度分别为:沙门菌10^4cfu/mL,志贺菌10^2cfu/mL,副溶血性弧菌10^4cfu/mL。并进行了人工模拟食品和粪便样品的检测。结论初步建立能在8h内快速、灵敏、特异地同时测定沙门菌、志贺菌和副溶血性弧菌的多重PCR检测技术。  相似文献   

4.
目的建立食品中沙门菌聚合酶链反应(PCR)的快速检测方法。方法根据沙门菌invA基因序列设计引物;氯化镁孔雀绿选择性增菌0到8h后,煮沸法提取DNA,用PCR扩增电泳。结果PCR法能特异性检测出食品中的沙门菌,扩增片段为389bp,增菌前的检出限为10^2CFU/g,增菌后为2CFU/25g。结论应用PCR检测沙门菌具有快速、特异、灵敏和简便的特点。  相似文献   

5.
多重PCR结合基因芯片技术检测11种致病菌方法的建立   总被引:2,自引:0,他引:2  
目的建立一种运用多重PCR方法结合基因芯片技术快速、准确检测11种常见致病菌的方法。方法筛选志贺氏菌、肠炎沙门氏菌、伤寒沙门氏菌、大肠杆菌O157、副溶血性弧菌、普通变形杆菌、蜡样芽孢杆菌、金黄色葡萄球菌、单核细胞增生李斯特菌、产气荚膜梭菌、空肠弯曲菌的特异基因作为目的基因。设计相应的引物及探针,进行多重PCR扩增,制备寡核苷酸芯片。将多重PCR扩增产物与带有11种特异探针的基因芯片杂交。用扫描仪扫描,判定细菌种类。结果该基因芯片可特异性地检测11种致病菌,具有良好的特异性,基因组DNA检测灵敏度可达2×10-3ng。结论多重PCR结合基因芯片技术检测11种不同致病菌的方法特异性好,灵敏度高,具有较好的实用性。  相似文献   

6.
目的建立快速同时检测沙门菌、志贺菌和副溶血弧菌的多重聚合酶链反应(PCR)技术。方法根据沙门菌hilA基因、志贺菌ipaH基因及副溶血性弧菌tdh基因序列设计引物,进行PCR扩增及电泳检测。同时优化反应体系,测定特异性和灵敏度。结果该多重PCR技术能在8 h内同时检测3种目的菌,通过检测其他9种常见食源性致病菌,结果表明该方法特异性好,多重PCR检测灵敏度分别为:沙门菌104cfu/mL,志贺菌102cfu/mL,副溶血性弧菌104cfu/mL。并进行了人工模拟食品和粪便样品的检测。结论初步建立能在8h内快速、灵敏、特异地同时测定沙门菌、志贺菌和副溶血性弧菌的多重PCR检测技术。  相似文献   

7.
凌霞  沙丹  肖勇  张敬平  吴家林 《检验医学》2009,24(2):101-105
目的建立同时检测空肠弯曲菌、单核细胞增生性李斯特菌(简称单增李斯特菌)和大肠杆菌O157的多重聚合酶链反应(PCR)检测技术。方法根椐空肠弯曲菌mapA基因序列、单增李斯特菌的编码溶血素(hly)基因序列和大肠杆菌的O157抗原(rfbE)基因序列,分别设计了3对特异引物,PCR扩增的目的基因片段为589 bp、360 bp和194bp;并对反应条件进行了优化。结果对3种致病菌检测,多重PCR检测DNA的敏感度分别为空肠弯曲菌2.264 ng、单增李斯特菌37.92 ng、大肠杆菌2.100 ng,样品检测时间6-8 h。结论该方法操作简便,检测周期短,特异性和敏感度高,为同时检测污染样品中空肠弯曲菌、单增李斯特菌和大肠杆菌O157奠定了基础。  相似文献   

8.
应用寡核苷酸芯片技术检测食源性感染常见致病菌   总被引:8,自引:0,他引:8  
目的建立食源性感染常见致病菌的快速检测方法。方法利用带正电荷尼龙膜为芯片载体,合成寡核苷酸探针,点样于载体制成寡核苷酸芯片,对食源性感染常见致病菌23Sr DNA基因片段扩增产物进行杂交检测。结果在同一条件下运用设计的通用引物扩增出16种(属)细菌23Sr DNA基因片段。大肠埃希菌、沙门菌、志贺菌、霍乱弧菌、副溶血弧菌、变形杆菌、单核细胞增生李斯特菌、蜡样芽孢杆菌、肉毒梭菌和空肠弯曲菌等10种(属)菌杂交结果显示,高灵敏度和特异性;金黄色葡萄球菌、链球菌、小肠结肠炎耶尔森菌和产气荚膜梭菌等4种(属)菌,未能显示预期的种(属)杂交结果;而应用食源性感染模拟标本,检测肺炎链球菌和绿脓假单胞菌两种与食源性感染无关的致病菌未与芯片上探针出现杂交反应,检出水平可达10CFU/ml。结论建立的寡核苷酸芯片技术在食源性感染常见致病菌的检测上快速准确等优点,为食源性感染的诊治与预防提供了有效的技术手段和方法依据。  相似文献   

9.
目的建立同时检测空肠弯曲菌、单核细胞增生性李斯特菌(简称单增李斯特菌)和大肠杆菌O157的多重聚合酶链反应(PCR)检测技术。方法根椐空肠弯曲菌mapA基因序列、单增李斯特菌的编码溶血素(hly)基因序列和大肠杆菌的O157抗原(rfbE)基因序列,分别设计了3对特异引物,PCR扩增的目的基因片段为589 bp、360 bp和194bp;并对反应条件进行了优化。结果对3种致病菌检测,多重PCR检测DNA的敏感度分别为空肠弯曲菌2.264 ng、单增李斯特菌37.92 ng、大肠杆菌2.100 ng,样品检测时间6~8 h。结论该方法操作简便,检测周期短,特异性和敏感度高,为同时检测污染样品中空肠弯曲菌、单增李斯特菌和大肠杆菌O157奠定了基础。  相似文献   

10.
复合PCR鉴别葡萄球菌及其多重耐药基因   总被引:1,自引:0,他引:1  
目的 建立既可鉴别金黄色葡萄球菌又可同时检测其耐药基因的分子诊断方法。方法 对应于femB、mecA、ileS基因的 3对引物与快速提取的单菌落模板DNA进行单管同步扩增 ,电泳观察PCR片段 ;mecA、ileS耐药基因扩增结果分别与苯唑西林、莫匹罗星药敏试验对比 ,分析菌株的耐药性。结果 检测femB基因可快速特异性地筛选出金黄色葡萄球菌 ,mecA基因的检出与常规药敏试验鉴定耐甲氧西林葡萄球菌 (MRS)的结果基本一致 ,而拥有ileS基因的全部葡萄球菌分离株对莫匹罗星耐药。结论 复合PCR可快速敏感地从葡萄球菌中区分金黄色葡萄菌 ,并同时检出MRSA和耐莫匹罗星的多重耐药菌株。  相似文献   

11.
Lomefloxacin (SC-47111; NY-198) is a new difluoroquinolone agent. It inhibited 90% of Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Proteus mirabilis, Morganella morganii, Proteus vulgaris, Serratia marcescens, Salmonella spp., Shigella spp., Aeromonas spp., Yersinia spp., Haemophilus influenzae, and Neisseria gonorrhoeae at less than or equal to 2 micrograms/ml. Lomefloxacin inhibited 90% of Pseudomonas aeruginosa at 4 micrograms/ml. Lomefloxacin was equal in activity to norfloxacin against Escherichia coli, Klebsiella spp., Enterobacter spp., Haemophilus influenzae, and Neisseria gonorrhoeae but was twofold less active against Proteus spp., Providencia spp., Serratia marcescens, Salmonella spp., and Shigella spp. Ofloxacin was generally 2- to 4-fold more active, and ciprofloxacin was 4- to 16-fold more active. Lomefloxacin inhibited Staphylococcus aureus, including methicillin-resistant isolates, but MICs for 90% of streptococcal species tested were 8 micrograms/ml. In the presence of 9 mM Mg2+, MICs for Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa were increased, as they were when they were tested in urine. A single-step increase in resistance to eightfold above the MIC occurred at a frequency of less than 10(-10), but serial transfer of bacteria in the presence of the agent produced MIC increases. Lomefloxacin had activity and properties comparable to those of many of the new quinolones.  相似文献   

12.
HRE 664, a new penem antibiotic, inhibited 90% of Escherichia coli, Klebsiella, Citrobacter diversus, Proteus mirabilis, Proteus vulgaris, Salmonella, Shigella, Providencia, Aeromonas, and Morganella at less than or equal to 2 micrograms/ml but was considerably less active than cefotaxime, ceftazidime, and imipenem. It did not inhibit Pseudomonas aeruginosa (MIC greater than 128 micrograms/ml). HRE 664 inhibited Enterobacter spp., Citrobacter freundii, and Serratia marcescens at 1-8 micrograms/ml, two- to fourfold higher MICs than imipenem. HRE 664 inhibited methicillin-susceptible Staphylococcus aureus and Staphylococcus epidermidis at less than or equal to 0.12 micrograms/ml, but methicillin-resistant S. aureus and S. epidermidis were resistant. Group A, C, and G streptococci and Streptococcus pneumoniae were inhibited by 0.06 micrograms/ml. Bacteroides and Clostridium species were inhibited by 0.25 micrograms/ml comparable to imipenem. HRE 664 was not hydrolyzed by beta-lactamases TEM-1, TEM-2, TEM-3, TEM-5, SHV-1, PSE-1, PSE-4, OXA-2, OXA-3, K-1, P99, Morganella, P. vulgaris, and S. aureus PC-1 but was hydrolyzed by the beta-lactamase of Xanthomonas maltophilia.  相似文献   

13.
目的测定战创伤涂膜剂对常见化脓菌的最低抑菌浓度(minimum inhibitory concentration,MIC)和最低杀菌浓度(minimum bactericidal concentration,MBC)。方法以培养基稀释战创伤涂膜剂、氯己定甲硝唑乳膏至不同浓度,分别加入化脓菌标准菌株大肠埃希菌、金黄色葡萄球菌、铜绿假单胞菌、奇异变形杆菌悬液,菌液浓度为10^5cfu/ml,培养后观察细菌生长情况,确定两药的MIC和MBC并进行比较。结果战创伤涂膜剂对大肠埃希菌、金黄色葡萄球菌、铜绿假单胞菌、奇异变形杆菌的MIC分别为0.0625μg/ml、2μg/ml、4μg/ml、8μg/ml,MBC分别为0.125μg/ml、4μg/ml、4μg/ml、8μg/ml。氯己定甲硝唑乳膏对大肠埃希菌、金黄色葡萄球菌、铜绿假单胞菌、奇异变形杆菌的MIC分别为1μg/ml、8μg/ml、〉32μg/ml、〉32μg/ml,MBC分别为2μg/ml、16μg/ml、〉32μg/ml、〉32μg/ml。两药对金黄色葡萄球菌的杀菌率均达到99%以上。结论战创伤涂膜剂对常见化脓菌有良好的抑菌、杀菌作用。  相似文献   

14.
In vitro activity of LB10522 was compared with those of cefpirome, ceftazidime, ceftriaxone, and cefoperazone against clinical isolates. Against gram-positive bacteria, LB10522 was most active among the compounds tested. It was fourfold more active than cefpirome against methicillin-susceptible Staphylococcus aureus and Enterococcus faecalis. LB10522 was highly effective against most members of the family Enterobacteriaceae tested. Ninety percent of isolates of Escherichia coli, Klebsiella oxytoca, Proteus vulgaris, Proteus mirabilis, and Salmonella spp. were inhibited at a concentration of < or = 0.5 micrograms/ml. These activities were comparable to those of cefpirome. Against Pseudomonas aeruginosa, LB10522 with a MIC at which 90% of the isolates are inhibited of 2 micrograms/ml was 16- and 32-fold more active than ceftazidime and ceftazidime against systemic infections caused by Staphylococcus aureus giorgio, Streptococcus pneumoniae III, Pseudomonas aeruginosa 1912E, Escherichia coli 851E, Proteus mirabilis 1315E, Serratia marcescens 1826E, and Acinetobacter calcoaceticus Ac-54. LB10522 was very resistant to hydrolysis by various beta-lactamases such as TEM-3, TEM-7, SHV-1, FEC-1, and P-99. LB10522 did not induce beta-lactamase in Enterobacter cloacae 1194E, although most of the reference cephalosporins acted as inducers of beta-lactamase in this strain. Time-kill study showed that LB10522, at concentrations of two or four times the MIC, had a rapid bactericidal activity against Staphylococcus aureus 6538p, Escherichia coli 851E, and Pseudomonas aeruginosa 1912E.  相似文献   

15.
6315-S, a novel difluoromethyl thioacetamido oxacephem, had in vitro activity comparable to that of cefotaxime and moxalactam against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Citrobacter diversus, Salmonella spp., and Shigella spp., inhibiting 90% at less than or equal to 0.25 microgram/ml. It inhibited piperacillin- and cefoperazone-resistant isolates in these species. 6315-S did not inhibit cefotaxime- or moxalactam-resistant Citrobacter freundii, Enterobacter aerogenes, or Enterobacter cloacae (MICs for 90% of the strains tested were greater than or equal to 16 micrograms/ml). Proteus vulgaris resistant to cefotaxime was inhibited. Pseudomonas species and Acinetobacter species were resistant (MICs greater than 64 micrograms/ml). MICs for 90% of the Staphylococcus aureus and S. epidermidis isolates were 4 micrograms/ml. 6315-S was highly active against anaerobic species of Clostridium, Fusobacterium, Bacteroides, and peptostreptococci and was superior to other agents against these organisms. 6315-S was not hydrolyzed by the major plasmid and chromosomal beta-lactamases, but it induced chromosomal beta-lactamases in Enterobacter cloacae and Pseudomonas aeruginosa.  相似文献   

16.
Against 182 anaerobe and 241 aerobe strains obtained from diabetic foot infections, doripenem was the most active carbapenem against Pseudomonas aeruginosa (MIC(90), 2 microg/ml), more active than imipenem against Proteus mirabilis, and ertapenem was more active against Escherichia coli and Klebsiella spp. The MIC(50) and MIC(90) values were < or =0.125 microg/ml for methicillin-sensitive Staphylococcus aureus and all streptococci and 0.25/1 for Bacteroides fragilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号