首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a new method to generate test patterns for multiple stuck-at faults in combinational circuits. We assume the presence of all multiple faults of all multiplicities and we do not resort to their explicit enumeration: the target fault is a single component of possibly several multiple faults. New line and gate models are introduced to handle multiple fault effect propagation through the circuits. The method tries to generate test conditions that propagate the effect of the target fault to primary outputs. When these conditions are fulfilled, the input vector is a test for the target fault and it is guaranteed that all multiple faults of all multiplicities containing the target fault as component are also detected. The method uses similar techniques to those in FAN and SOCRATES algorithms to guide the search part of the algorithm, and includes several new heuristics to enhance the performance and fault detection capability. Experiments performed on the ISCAS'85 benchmark circuits show that test sets for multiple faults can be generated with high fault coverage and a reasonable increase in cost over test generation for single stuck-at faults.  相似文献   

2.
文章提出了一种基于小波神经网络的模拟电路故障诊断方法。这种方法采用正弦信号作为被测电路的输入激励,在时域中对输出信号采样来构造神经网络的训练和测试样本,将自适应学习率及附加动量BP算法训练后的小波神经网络应用于容差模拟电路故障诊断中。仿真试验表明,该方法减少了故障诊断时间和提高了网络的平均诊断正确率。  相似文献   

3.
The paper presents a test stimulus generation and fault simulation methodology for the detection of catastrophic faults in analog circuits. The test methodology chosen for evaluation is RMS AC supply current monitoring. Tests are generated and evaluated taking account of the potential fault masking effects of process spread on the faulty circuit responses. A new test effectiveness metric of probability of detection is defined and the application of the technique to an analog multiplier circuit is presented. The fault coverage figures are therefore more meaningful than those obtained with a fixed threshold.  相似文献   

4.
In this paper, the integration of design and test flows for mixed-signal circuits is discussed. The aim is to decrease test generation and debugging costs and time-to-market for the analogue blocks in mixed-signal circuits. A tool developed in order to automate the data sharing between design and test environments is described and the functionality of this tool is explained. The generation of a test plan consists of the selection of the separate test functions and addition of commands for control signal generation and tester routing. The usage of design data for each of these functions is explained and the tool is evaluated in the design and testing of a mixed-signal demonstrator circuit. Results from this experience are discussed.  相似文献   

5.
Fault Modeling and Simulation Using VHDL-AMS   总被引:1,自引:0,他引:1  
Fault simulation is an accepted part of the test generation procedure for digital circuits. With complex analog and mixed-signal integrated circuits, such techniques must now be extended. Analog simulation is slow and fault simulation can be prohibitively expensive because of the large number of potential faults. We describe how the number of faults to be simulated in an analog circuit can be reduced by fault collapsing, and how the simulation time can be reduced by behavioral modeling of fault-free and faulty circuit blocks. These behavioral models can be implemented in SPICE or in VHDL-AMS and we discuss the merits of each approach. VHDL-AMS does potentially offer advantages in tackling this problem, but there are a number of computational difficulties to be overcome.  相似文献   

6.
《Microelectronics Journal》2015,46(10):893-899
Using Hilbert–Huang transform (HHT) and coherence analysis, a signature extraction method for testing analog and mixed-signal circuits is proposed in this paper. The instantaneous time–frequency signatures extracted with HHT technique from the measured signal of circuits under test (CUT) are used for faults detection that is implemented through comparing the signatures of faulty circuits with that of the fault-free circuit. The coherence functions of the instantaneous time–frequency signatures and its integral help to test faults in the faulty dictionary according to the minimum distance criterion. The superior capability of HHT-based technique, compared to traditional linear techniques such as the wavelet transform and the fast Fourier transform, is to obtain the subtle time-varying signatures, i.e., the instantaneous time–frequency signatures, and is demonstrated by applying to Leapfrog filter, a benchmark circuit for analog and mixed-signal testing, with 100% of F.D.R (fault detection rate) in the best cases and with the least 24.2% of F.L.R. (fault localization rate) with one signature.  相似文献   

7.
A robust test set for analog circuits has to detect faults under maximal masking effects due to variations of circuit parameters in their tolerance box. In this paper we propose an optimization based multifrequency test generation method for detecting parametric faults in linear analog circuits. Given a set of performances and a frequency range, our approach selects the test frequencies that maximize the observability on a circuit performance of a parameter deviation under the worst masking effects of normal variations of the other parameters. Experimental results are provided and validated by HSpice simulations to illustrate the proposed approach.  相似文献   

8.
Automatic test pattern generation (ATPG) for sequential circuits involves making decisions in the search decision spaces bounded by a sequential circuit. The flip-flops in the sequential circuit determine the circuit state search decision space. The inputs of the circuit define the combinational search decision space. Much work on sequential circuit ATPG acceleration focused on how to make ATPG search decisions. We propose a new technique to improve sequential circuit ATPG efficiency by focusing on not repeating previous searches. This new method is orthogonal to existing deterministic sequential circuit ATPG algorithms.A common search operation in sequential circuit ATPG is justification, which is to find an input assignment to justify a desired output assignment of a component. We have observed that implications in a circuit resulting from prior justification decisions form an unique justification decomposition. Since the connectivity of a circuit does not change during ATPG, test generation for different target faults may share identical justification decision sequences represented by identical decision spaces. Because justification decomposition represents the collective effects of prior justification decisions, it is used to identify previously-explored justification decisions. Preliminary results on the ISCAS 1989 circuits show that our test generator (SEST) using justification decompositions, on average, runs 2.4 and 4.5 times faster than Gentest and Hitec, respectively. We describe the details of justification equivalence and its application in ATPG accompanied with step-by-step examples.  相似文献   

9.
While in the digital domain, test development is primarily conducted with the use of automated tools, knowledge-based, ad hoc test methods have been in use in the analog domain. High levels of design integration and increasing complexity of analog blocks within a system necessitate automated system-level analog test development tools. We outline a methodology for specification-based automated test generation and fault simulation for analog circuits. Test generation is targeted at providing the highest coverage for each specified parameter. The flexibility of assigning analog test attributes is utilized for merging tests leading to test time reduction with no loss in test coverage. Further optimization in test time is obtained through fault simulations by selecting tests that provide adequate coverage in terms of several components and dropping the ones that do not provide additional coverage. A system-level test set target in the given set of specifications, along with fault and yield coverages in terms of each targeted parameter, and testability problems are determined through the proposed methodology.  相似文献   

10.
We classify all path-delay faults of a combinational circuit intothree categories: singly-testable (ST), multiply-testable (MT), and singly-testable dependent} (ST-dependent). The classification uses anyunaltered single stuck-at fault test generation tool. Only two runsof this tool on a model network derived from the original network areperformed. As a by-product of this process, we generate single andmultiple input change delay tests for all testable faults. With thesetests, we expect that most defective circuits are identified. All STfaults are guaranteed detection in the case of a single fault, andsome may be guaranteed detection through robust and validatablenon-robust tests even in the case of multiple faults. An ST-dependentfault can affect the circuit speed only if certain ST faults arepresent. Thus, if all ST faults are tested, the ST-dependent faultsneed not be tested. MT faults cannot be guaranteed detection, butaffect the speed only if delay faults simultaneously exist on a setof paths, none of which is ST. Examples and results on several ISCAS89 benchmarks are presented. The method of classification throughtest generation using a model network is complex and can be appliedto circuits of moderate size. For larger circuits, alternativemethods will have to be explored in the future.  相似文献   

11.
12.
The rapidly evolving role of analog signal processing has spawned off a variety of mixed-signal circuit applications. The integration of the analog and digital circuits has created a lot of concerns in testing these devices. This paper presents an efficient unified fault simulation platform for mixed-signal circuits while accounting for the imprecision in analog signals. While the classical stuck-at fault model is used for the digital part, faults in the analog circuit cover catastrophic as well as parametric defects in the passive and active components. A unified framework is achieved by combining a discretized representation of the analog circuit with the Z-domain representation of the digital part. Due to the imprecise nature of analog signals, an arithmetic distance based fault detection criterion and a statistical measure of digital fault coverage are proposed.This research was supported by the National Science Foundation under grant MIP-9222481.  相似文献   

13.
A new hierarchical modeling and test generation technique for digital circuits is presented. First, a high-level circuit model and a bus fault model are introduced—these generalize the classical gate-level circuit model and the single-stuck-line (SSL) fault model. Faults are represented by vectors allowing many faults to be implicitly tested in parallel. This is illustrated in detail for the special case of array circuits using a new high-level representation, called the modified pseudo-sequential model, which allows simultaneous test generation for faults on individual lines of a multiline bus. A test generation algorithm called VPODEM is then developed to generate tests for bus faults in high-level models of arbitrary combinational circuits. VPODEM reduces to standard PODEM if gate-level circuit and fault models are used. This method can be used to generate tests for general circuits in a hierarchical fashion, with both high- and low-level fault types, yielding 100 percent SSL fault coverage with significantly fewer test patterns and less test generation effort than conventional one-level approaches. Experimental results are presented for representative circuits to compare VPODEM to standard PODEM and to random test generation techniques, demonstrating the advantages of the proposed hierarchical approach.  相似文献   

14.
A design methodology for on-line testing analog linear fully differential (FD) circuits is presented in this work. The test strategy is based on concurrently monitoring via an analog checker the common mode (Chi) at the inputs of all amplifiers, The totally self-checking (TSC) goal is achieved for linear FD implementations provided that the checker CM threshold is small enough with respect to the specified margins of erroneous behavior in the circuit outputs. The design methodology is illustrated for a switched-capacitor biquadratic filter and the self-checking properties evaluated for a hard/soft-fault model. A large checker threshold of 100 mV of CM is chosen since the filter implementation does not minimize nonidealities (e.g., amplifier offsets or clock feedthrough) which result in significant CM components. The circuit outputs are accepted to deviate within a 10% band. With the implemented checker, the TSC goal is not achieved for some faults in narrow regions of the frequency band. For the worst case, a hard fault which results in a 31% deviation is undetected in only a narrow band of approximately 310 Hz. The circuit can be made TSC with a checker threshold of 40 mV and an accepted output deviation of 15%. This is, however, more demanding on the checker (which currently takes less than 3% of the total area and about 7.6% of the total power) and requires an improved filter implementation to reduce CM components. Our solution consists of relaxing a bit the TSC property of the functional block and applying a periodical off-line test to make the checker strongly code disjoint (SCD). This is easy to implement since an off-line test is also required for the checker. The checker outputs a double-rail error indication which ensures compatibility with digital checkers and makes the design of self-checking mixed signal circuits straightforward. The circuit-level mixed-signal approach is extended to the board level by means of the IEEE Std. 1149.1 digital test bus  相似文献   

15.
A switch-level test generation system for synchronous and asynchronous circuits has been developed in which a new algorithm for fully automatic switch-level test generation and an existing fault simulator have been integrated. For test generation, a switch-level circuit is modeled as a logic network that correctly models the behavior of the switch-level including bidirectionality, dynamic charge storage, and ratioed logic. The algorithm is able to generate tests for combinational and sequential circuits. BothnMOS and CMOS circuits can be modeled. In addition to the classical line stuck-at faults, the algorithm is able to handle stuck-open and stuck-closed faults on the transistors of the circuit.In synchronous circuits, the time-frame based algorithm uses asynchronous processing within each clock phase to achieve stability in the circuit and synchronous processing between clock phases to model the passage of time. In asynchronous circuits, the algorithm uses asynchronous processing to reach stability within and between modules. Unlike earlier time-frame based test generators for general sequential circuits, the test generator presented uses the monotonicity of the logic network to speed up the search for a solution. Results on benchmark circuits show that the test generator outperforms an existing switch-level test generator both in time and space requirements. The algorithm is adaptable to mixed-level test generation.  相似文献   

16.
One of the main requirements for generating test patterns for analog and mixed-signal circuits is fast fault simulation. Analog fault simulation is much slower than the digital equivalent. This is due to the fact that digital circuit simulators use less complex algorithms compared with transistor-level simulators. Two of the techniques to speed up analog fault simulation are: fault dropping/collapsing, in which faults that have similar circuit responses compared with the fault-free circuit response and/or with another faulty circuit response are considered equivalent; and behavioral/macro modeling, whereby parts of the circuit are modeled at a more abstract level, therefore reducing the complexity and the simulation time. This paper discusses behavioral fault modeling to speed-up fault simulation for analog circuits.  相似文献   

17.
模拟电路的固有特点使其故障诊断较数字电路困难.相对于BP网络,RBF神经网络具有最佳逼近性能且收敛快、无局部极小,可引入解决上述困难.根据具体电路,定义故障,选定测试点,确定网络结构,用Pspice获得训练样本,经过训练得到RBF网络.网络的输入为从测试点得到的输入向量,输出为对应的故障.为了验证网络的泛化性能,对每种...  相似文献   

18.
We propose a method of diagnosing analog circuits that is achieved by combining an operation-region model and an XY zoning method. The XY zoning method can be used to detect faults in analog circuits by using the relationship between circuit inputs and outputs. The operation-region model can be used to analyze/model circuit behaviors by utilizing changes in the operation regions of MOS transistors in a circuit. Operation regions are obtained from transistor node voltages at sampling time corresponding to a particular excitation of the input value and the corresponding output value. Since we developed a data processing method to handle data discretely, we could implement a procedure for diagnosis based on the preset test, which is a method of diagnosing digital circuits. We demonstrated the effectiveness of our method by applying it to ITC’97 benchmark circuits with hard and soft faults. We found that the diagnostic resolution is one for every fault.  相似文献   

19.
Due to technology scaling and increasing clock frequency, problems due to noise effects lead to an increase in design/debugging efforts and a decrease in circuit performance. This paper addresses the problem of efficiently and accurately generating two-vector tests for crosstalk induced effects, such as pulses, signal speedup and slowdown, in digital combinational circuits. These noise effects can propagate through a circuit and create a logic error in a latch or at a primary output. We have developed a mixed-signal test generator, called XGEN, that incorporates classical static values as well as dynamic signals such as transitions and pulses, and timing information such as signal arrival times, rise/fall times, and gate delay. In this paper we first discuss the general framework of the test generation algorithm followed by computational results. Comparison of results with SPICE simulations confirms the accuracy of this approach.  相似文献   

20.
In this paper we have investigated a unified and simultaneous fault detection method for mixed-signal integrated circuits. The method is based on the analysis of the power-supply current through the circuit under test. The analysis has been done paying attention to the dynamic behaviour of the power-supply current, in order to avoid measurement problems related to the large amount of quiescent current drop across many analog blocks.The analysis of the dynamic power-supply current entails certain problems related to the complexity of the measurement process, especially those due to the high speed of the current transients. These problems have been addressed by considering a design for test procedure based on the use of built-in dynamic current sensors.The goal of the design for test methodology proposed is to represent the Iddt through the mixed-signal IC under test by a digital signature. The paper presents some advantages of this approach such as a good tolerance to cross-talk noise and the need for only a conventional digital tester on the complete mixed-signal IC for fault detection. The analysis is illustrated with some test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号