首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
构造函数解决与不等式相关问题是很常见的,但通常都是构造单调函数,并利用其单调性来完成解答.本文介绍一种新的构造方法,它不是利用函数单调性,而是应用函数值在其变量取值范围内有确定符号来解题.下面分别举几例来加以说明.例1已知a1,a2,…,an,b1,b2,…,bn∈[1,2],且∑ni=1ai2=∑ni=1b2i.求证:∑ni=1ai3bi≤1107∑i=n1b2i.证明:构造f(x)=x-12(x-2)x+52,则当21≤x≤2时,f(x)≤0故x3-1201x2+52≤0,即x3≤1210x2-52.又21≤baii≤2,所以bai3i3≤2110bai22i-25,ba3ii≤1210ai2-25b2i.故∑ni=1ai3bi≤1210∑i=n1a2i-52∑i=n1b2i=1210∑i=n1b2i-5…  相似文献   

2.
文[1]建立了一类三角形面积不等式,本文改进并推广其结果.引理 设△AiBiCi的三边及面积分别为ai、bi、ci及△i,且λi∈R (i=1,2,…,n),记a0=∑ni=1λiai,b0=∑ni=1λibi,c0=∑ni=1λici,则以a0、b0、c0为三边可作三角形,且其面积   △0≥(∑ni=1λi△i)2,(1)仅当△A1B1C1∽△A2B2C2∽…∽△AnBnCn时取等号.证明 由ai bi>ci(i=1,2,…,n)有 a0 b0=∑ni=1λiai ∑ni=1λibi=∑ni=1λi(ai bi)>∑ni=1λici=c0;等等,故以a0、b0、c0为三边可作三角形.记其半周长pi=12(ai bi ci) (i=0,1,2,…,n),易知p0=∑ni=1λipi及p0-a0=∑ni=1λi(…  相似文献   

3.
猜想 [1] 设 x1,x2 ,… ,xn∈ R+ ,n为正整数 ,证明或否定 :n( n - 1 ) ∑ni=1x3 i + ( ∑ni=1xi) 3 ≥ ( 2 n - 1 ) ∑ni=1xi∑ni=1x2i ( 1 )这是杨学枝老师近日提出的一个猜想 .经探讨发现 ,此猜想成立 .为证明 ( 1 )式成立 ,先给出如下引理 .引理 1  x1,x2 ,… ,xn∈ R,n为正整数 ,则( ∑ni=1xi) 3 =∑ni=1x3 i + 3∑i≠ jx2ixj+ 6 ∑1≤ i相似文献   

4.
连续函数的l凸性   总被引:4,自引:0,他引:4  
在研究函数的性态时,笔者发现如下定义的l凸函数,它反映了函数中普遍存在的凸偏移现象.定义:设f(x)是定义在实数集D上的实值函数,常数l∈R,若对 xk∈M( D),pk≥ 0,k=1,2,…,n, (n∈N,n≥2),∑nk=1pk=1,都有f(∑ni=1pixi+l)≤∑ni=1pif(xi)则称f(x)为M上的l凸函数;当-f(x)为l凸函数时,称f(x)为M上的l凹函数.下面给出连续函数具有l凸性的两个判定定理:定理 1:设f(x)是定义在 [a,a+2l] (l>0)上的连续的增函数,则f(x)是 [a,a+l]上的l凹函数,也是[a+l,a+2l]上的(-l)凸函数.证明:设xi∈[a,a+l] (i=1,2,…,n),x1≤x2≤…≤xn,则xi+l∈[a+l,a…  相似文献   

5.
设 xi ∈ ( 0 ,1 ) ,i =1 ,… ,n,且∑ni=1xi =a,∑ni=1x2i =b,求证∑ni=1x3i1 - xi≥ a2 ab - nbn - a ,( 1 )文 [1 ]~ [3]给出了 ( 1 )式不同的初等证明 ,文 [4 ]利用柯西不等式将 ( 1 )式加强为    ∑ni=1x3i1 - xi ≥ b2a - b ( 2 )本文利用概率方法对 ( 2 )式作指数推广 .为此 ,作为引理 ,给出概率的 Jensen不等式 .引理 设随机变量ξ取值于区间 ( a,b) ,-∞≤ a≤ b≤ ∞ ,g是 ( a,b)上连续的凸函数 ,则当 Eξ,Ε[g(ξ) ]存在时 ,有g( Eξ)≤ E[g(ξ) ].证明 任取 x0 ∈ ( a,b) ,设曲线 y =g( x)在点 x0 的切线斜率为 k( x…  相似文献   

6.
一类二次方程组的一个定理及其运用   总被引:1,自引:0,他引:1  
定理 在方程组∑ni=1xi=A∑ni=1x2i=B中 ,A、B是实数 ,记Δ=n B-A2 .若 xi∈ R( i=1,2 ,… ,n) ,则Δ≥ 0 ,当且仅当x1 =x2 =… =xn=An时 Δ=0 .证明  ∑1≤ i相似文献   

7.
一个分式型不等式定理及其应用   总被引:5,自引:2,他引:3  
引理 若xi∈R ,i=1,2,…,n,则1) 1nΣni=1xαi≥1nΣni=1xiα(α≥1或α<0)2) 1nΣni=1xαi≤1nΣni=1xiα(0<α<1)注 此引理可由琴生(Jensen)不等式推出.因篇幅有限,这里不再赘述,读者可参阅参考文献〔1〕和〔2〕.定理1 若ai、bi∈R ,i=1,2,…,n,γ≥2或γ<0,β>0,则Σni=1aribβi≥n1-r β.Σni=1airΣni=1biβ证明 由已知和柯西不等式,得Σni=1bβiΣni=1aribβi=Σni=1bβi2Σni=1aγibβi2≥Σni=1bβi.aγibβi2=Σni=1aγ2i2(1)由引理1)和2),得Σni=1aγ2i2≥n2-γΣni=1aiγ及Σni=1bβi-1≥n-1 βΣni=1bi-β(β≥1或0<β<…  相似文献   

8.
幂不等式及其应用   总被引:1,自引:1,他引:0  
定理:设p、q、x、y是正数,则px qy≥(p q)xp pqyp qq,当且仅当x=y时等号成立.证明:因为lgx是上凸函数,由琴生不等式得lgppx qqy≥plgpx qqlgy,整理即可得证.推广:设ai,xi∈R (i=1,2,…,n),s=∑ni=1ai,则∑ni=1aixi≥s∏ni=1xisai,当且仅当xi=xj时等号成立.一、证明轮换无理对称不等式1.设a,b是正数,求证:a a3b b b3a≥1证明:设a a3b≥kana nbn(k>0),则(1-k2)a2n 2(ab)n b2n≥3k2ba2n-1(1)由幂不等式,上式的左边≥(4-k2)a2n(41--kk22)(ab)42-nk2b42-nk2=(4-k2)a2n4(2--k2k2)b44-nk2(2)令(1)(2)式的右边相等,解得k=1n=43,所以a a3b≥a43a 4…  相似文献   

9.
借用柯西不等式巧解无理方程   总被引:1,自引:1,他引:0  
吴晓明 《中学数学》2001,(12):15-16
对于柯西不等式(∑ni=1aibi) 2 ≤ ∑ni=1a2i∑ni=1b2i  (ai、bi ∈ R) ,若  (∑ni=1aibi) 2 =∑ni=1a2i∑ni=1b2i成立 ,则有且仅有  ai =kbi  (k为常数 ,i =1 ,2 ,… ,n)也成立 .下面将运用柯西不等式取等号的这一特性 ,巧解 (或化简 )一些较为繁难 ,甚至常法不能求解的无理方程 .所解方程均求实根 .例 1 解方程x 4- 3 x2 3 x 4- x2 =4.解 根据柯西不等式(x 4- 3 x2 3 x 4- x2 ) 2 ≤ [x2 (4 - x2 ) 2 ].[(4 - 3 x2 ) 2 (3 x) 2 ],而  x 4- 3 x2 3 x 4- x2 =4,∴  (x 4- 3 x2 3 x 4- x2 ) 2  =[x2 (4 - x2 ) 2 ].[(4 - 3…  相似文献   

10.
文[1]对函数f(x)=∑ni=1aix+bi的最小值进行了研究,得到如下结论:对于函数f(x)=∑ni=1aix+bi(ai∈Q,且ai≠0,bi∈R,i∈N*),总可以写成f(x)=m1[x-x1+x-x2+…+x-xn](x1≤x2≤…≤xn,m,n∈N*)的形式.(1)若n=2k-1(k∈N*),则x=xk时,f(x)取值最小;(2)若n=2k(k∈N*),则x∈[xk,xk+1]时,f(x)取值最小.上述结论只解决了ai∈Q的情形,并要对f(x)进行变形写成m1[x-x1+x-x2+…+x-xn]的形式.为此,笔者进一步研究得到更一般结论,使得问题彻底解决.因f(x)=∑ni=1aix+bi=∑ni=1ai x+biai,所以只要研究f(x)=∑ni=1ai x-xi(ai>0,x1相似文献   

11.
康托洛维奇不等式的一个简证及其极限形式   总被引:3,自引:0,他引:3  
线性规划中有一个康托洛维奇不等式 (Канторович) :若ai >0 (i=1 ,2 ,… ,n) ∑ni=1ai =1 ,0<λ1 ≤λ2 ≤… ≤λn,则 :(∑ni=1λiai) (∑ni=1aiλi) ≤(λ1 +λn) 24λ1 λn《中学数学》和《中学教研》杂志先后给出了该不等式的多种证明 ,有些需用高等方法 ,有些初等方法又相当复杂 ,本文给出该不等式一个极简证明和其极限形式。一、简证 :设f(x) =(∑ni=1λiai)x2 + (λ1 +λn)x +λ1 λn(∑ni=1aiλi)∵λi-(λ1 +λn) + λ1 λnλi    (i=1 ,2 ,… ,n)=(λi-λ1 ) (λi-λn)λi≤ 0而ai>0∴λiai-(λ1 +λn)ai+ λ1 λnai…  相似文献   

12.
文[1]给出了如下含参数根式不等式:定理1设ai∈R ,i=1,2,…,n,且∑ni=1ai=k,λ>0,μ≥0,则λk μ (n-1)μ0,μ≥0,则λk μn2≤n∑i=1λkai2 μ<λk μ (  相似文献   

13.
一个猜想的证明   总被引:5,自引:3,他引:2  
文 [1 ]提出了一个对称不等式 :已知x ,y ,z∈R+,且x+y+z=1 ,则( 1x -x) ( 1y -y) ( 1z -z) ≥ ( 83) 3 ( 1 )并在文末提出一个猜想 :设xi>0 ,i=1 ,2…n ,且 ni=1 xi=1 ,n≥ 3,则Πni=1 ( 1xi-xi) ≥ (n- 1n) n ( 3)本文将利用文 [2 ]中的结论 ,即下述引理 (审者注 :此引理由 [1 ]中定理 3,定理 4结合得出 )去证明这个猜想 .引理 设a 相似文献   

14.
20 2 设 xi >0 ,i =1,2 ,… ,n,n≥ 2 ,∑ni= 1xi =1,记 Ek(x) =Ek(x1 ,x2 ,… ,xn) =∑1≤ i1 <… 0 )时 ,有Ek(1x1 - m,… ,1xn - m)≥ Ckn(n - m) k.(续铁权 .2 0 0 1,1)2 0 3 设 Ai >0 ,λk>0  (i =1,2 ,… ,n;k = 1,2 ,… ,n) ,∑ni=1Ai ≤π,n∈ N.(1)若 0≤λ≤ 1,有C2n(1-λ21 λ2 ) 2 (λπ) 2 ≤ (n - 1 cosλπ) .∑nk= 1cos2 λAk - cosλπ(∑ni=1cosλAi) 2 ≤ C2n(λπ) 2 ,等号同时成立当且仅当λ=0 .(2 )若 0≤λ≤ 1,有4λ2 C2ncos2 λ2 π≤ (n - 1 cosλ…  相似文献   

15.
胡章柱 《数学通讯》2003,(15):44-45
例 1  ( 1995年数学冬令营第五题 )设xi >0 ,∑ni =1xi=1(i =1,2 ,… ,n) ,求证 :∑ni =1xi1+ (x1+x2 +… +xi- 1)xi+xi+ 1+… +xn≤ π2 .证 令sinθi=∑ik =1xk ,θ0 =0 (i =1,2 ,… ,n) ( 0<θi≤ π2 ) ,则∑ni=1xi1+ (x1+x2 +… +xi - 1)xi+xi + 1+… +xn=∑ni =1sinθi-sinθi- 11+sinθi - 11-sinθi- 1=∑ni =12sin θi-θi - 12 cosθi+θi- 12cosθi - 1≤∑ni =12sinθi-θi - 12<∑ni =1(θi-θi - 1)=θn -θ0 =π2 .例 1的命制及解法均含有高等数学中的思想方法 ,为了说明问题 ,我们给出如下两个结论 .定理 1 设 f(x) 是区…  相似文献   

16.
本文介绍两个用素数列来判定多项式不可约的定理 ,从而把素数与不可约多项式紧密联系起来了 .定理 1 对于整系数多项式f ( x) =∑ni=0aixi  ( n∈ N,an ≠ 0 ) ( 1 )若存在一个正整数 p >1 max0≤ i≤ n{| ai| },使| f ( p) |不是合数 ,则 f ( x)在 Q上不可约 .为证明定理 1 ,先给出两个引理 .引理 1 多项式 ( 1 )的根的模必小于u =1 max0≤ i≤ n{| ai| }.证明 当 f ( z) =0时 ,假设 | z|≥ u(因为 an ≠ 0 ,所以 u≥ 2 ) ,得| f ( z) |≥ | an| .| z| n - ( u - 1 ) ∑n- 1i=0| z| i≥ 1 . | z| n - ( u - 1 ) .| z| n - 1| z| -…  相似文献   

17.
一个不等式的推广   总被引:1,自引:0,他引:1  
本刊文[1]给出如下姊妹不等式:若a,b,c是正数,且a b c=1,则有1b c-ac 1a-ba 1b-c≥673(1)当且仅当a=b=c=31时取等号.1b c ac 1a ba1 b c≥1613(2)当且仅当a=b=c=31时取等号.不等式(1)可改写为:11-a-a1-1b-b1-1c-c≥673(3)当且仅当a=b=c=31时取等号.本文将把不等式(3)推广为:命题设xi>0(i=1,2,…,n),∑ni=1xi=1,则∏ni=1(1-1xi-xi)≥(n-n1-1n)n(4)当且仅当x1=x2=…=xn=1n时等号成立.引理设f″(x)>0,则1n∑ni=1f(xi)≥f(1ni∑=n1xi)(5)此即著名的Jesen不等式.下面给出(4)式的证明.证设y=f(x)=ln(1-1x-x)(0相似文献   

18.
文 [1 ]提出了一个猜想 :设xi>0 ,i=1 ,2 ,… ,n ,且 ∑ni=1xi=1 ,n≥ 3,则 ∏ni=11xi-xi ≥n - 1nn ( 1 )文 [2 ]利用下述引理“设a相似文献   

19.
文 [1 ]中 ,程龙海先生证明了下面不等式 :若 0≤ x,y≤ 1 ,则x2 y2 ( 1 - x) 2 y2 x2 ( 1 - y) 2 ( 1 - x) 2 ( 1 - y) 2≤ 2 2 . ( 1 )本文将 ( 1 )式作如下推广定理 若 0≤ x,y≤ 1 ,n≥ 2 ,n∈ N,则n xn yn n ( 1 - x) n yn n xn ( 1 - y) n n ( 1 - x) n ( 1 - y) n≤ 2 n 2 . ( 2 )引理 若 u≥υ≥ 0 ,n≥ 2 ,n∈ N,则n un υn ≤ u ( n 2 - 1 )υ. ( 3)证明 因为 u≥υ≥ 0 ,所以[u ( n 2 - 1 )υ]n=un ∑ni=1Cinun- i( n 2 - 1 ) ivi≥ un ∑ni=1Cin( n 2 - 1 ) iυn=un [∑ni=0Cin(…  相似文献   

20.
已知函数 f ( xi) ( i =1,2 ,3 ,… )的范围 ,求 f( x0 )的范围 .笔者在同行们研究的基础上 ,借用向量分解定理 ,使这类问题的解决更加简单、明了 ,可操作性强 ,便于实施 .例 1 已知一次函数 f( x) ,1≤ f ( 1)≤2 ,3≤ f ( 2 )≤ 4,试确定 f( 5 )的范围 .解 设一次函数为 f( x) =ax + b,则  f( 1) =a+ b,f( 2 ) =2 a+ b,f( 5 ) =5 a+ b.记  p1→ =a+ b,p2→ =2 a+ b,p=5 a+ b显然 p1→ ,p2→ 不共线 ,根据向量分解定理p=λ1 p1→ +λ2 p2→   (λ1 ,λ2 为实数 ) ,即  5 a+ b=λ1 ( a+ b) +λ2 ( 2 a+ b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号