首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
圆的重要定理在椭圆上的推广   总被引:3,自引:0,他引:3  
1 一道高考题启示2 0 0 3年高考北京试卷有如下题目 :如图 1 ,椭圆的长轴A1 A2 与x轴平行 ,短轴B1 B2 在 y轴上 ,中心为M( 0 ,r) (b>r >0 ) .图 1 椭圆1 )写出椭圆的方程 ,求椭圆的焦点坐标及离心率 ;2 )直线y =k1 x交椭圆于两点C(x1 ,y1 ) ,D(x2 ,y2 ) ( y2 >0 ) ;直线 y =k2 x交椭圆于两点G(x3,y3) ,H(x4,y4) ( y4>0 ) .求证 :k1 x1 x2x1 +x2=k2 x3x4x3+x4;3)对于 2 )中的C ,D ,G ,H ,设CH交x轴于点P ,GD交x轴于点Q .求证 :|OP| =|OQ| .(证明过程不考虑CH或GD垂直于x轴的情形 )解  1 )椭圆方程为 x2a2 + ( y -r) 2b2 =1 ,焦…  相似文献   

2.
最近笔者在研究圆锥曲线时,发现文[1]给出了第1628号数学问题为:直线l:x/m+y/n=1与椭圆x2/a2+y2/b2=1(a,b>0,a≠b)交于P、Q两点,O为椭圆的中心.求证:∠POQ=π/2的充要条件是1/m2+1/n2=1/a2+1/b2.文[2]经过探究得到性质(文[2]中的性质6):设P、Q为椭圆x2/a2+y2/b2=1(a,b>0,a≠b)上的两点,O为坐标原点,OP⊥OQ,则1/|OP|2+1/|OQ2|=1/a2+1/b2.  相似文献   

3.
圆锥曲线的又一性质   总被引:1,自引:0,他引:1  
有众多文献给出了圆锥曲线(即椭圆、双曲线、抛物线的统称)的美妙性质,本文再给出一条.定理 自圆锥曲线的准线与对称轴的交点引这条圆锥曲线的切线,则切线斜率的平方等于这条圆锥曲线离心率的平方.证 1)当圆锥曲线是椭圆时,不妨设椭圆的方程是x2a2 + y2b2 =1(a >b >0 ) ,只考虑点A(- a2c,0 )(其中a2 =b2 +c2 ,c >0 )处的切线.可设切线的方程为y =k(x + a2c) ,将其代入x2a2 + y2b2 =1,得(b2 +a2 k2 )x2 + 2a4k2c x + a6k2c2 -a2 b2 =0 .令Δ=2a4k2c2 - 4(b2 +a2 k2 )·a6k2c2 -a2 b2 =0 ,可得k2 =ca2 ,即k2 =e2 .2 )当圆锥曲线是双曲线时,…  相似文献   

4.
高中平面解析几何必修课本的几种版本的总复习题都有这样的一道题 :证明 :等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项 .教参给其提供了两种解法 ,这里再介绍两种解法 .解法 1 设等轴双曲线方程为 x2 - y2 =a2 ,则离心率 e =2 ,P( x,y)为其上任一点 ,F1、F2 为左右焦点 ,O为坐标原点 ,| PF1| =r1,| PF2 | =r2 ,由双曲线的焦半径知 :r1.r2 =| a ex| .| a - ex|  =| a2 - ex2 | =| a2 - 2 x2 |  =| x2 - y2 - 2 x2 | =| - x2 - y2 |  =x2 y2 =| OP| 2 .图 1解法 2 如图 1 ,由高中解几课本 P6例 2 (或叫三…  相似文献   

5.
设双曲线的方程为x2a2-y2b2=1(a>0,b>0,c=a2+b2),取其右焦点F(c,0),过点F的直线与双曲线交于不同两点P1(x1,y1),P2(x2,y2).若P1,P2同在双曲线右支上,则当P1P2垂直于实轴时,|P1P2|取最小值2b2a(即通径长)(证明见《中学数学》2005年第7期P16);若P1,P2分别在双曲线左、右支上,则当P1P2垂直于虚轴时,|P1P2|取最小值2a(即实轴长).证明如下:证明令直线P1P2的方程为y=kx+m(|k|相似文献   

6.
关于绝对值不等式|a|-|b|≤|a b|≤|a| |b|的另证.当b=0时,不等式显然成立.当b≠0时,它等价于-|b|≤|a b|-|a|≤|b|-1≤|a |b|b|-|a|≤1-1≤||(aa b|b)--|aa||≤1|(aa b|b)--|aa|≤1.图1 y=|x|于是作y=|x|的图象如图1.易见MN所在直线的斜率k满足|k|≤1,故不等式得证.2不等式1 x≤1 21x(x>0)的“斜率”表示.此不等式等价于1 x-1(1 x)-1≤21.它表示过P(1 x,1 x),Q(1,1)两点的斜率不小于y=1 x在Q(1,1)点的切线的斜率.3如何比较23与32大小.令f(x)=lgxx则f(x)=lgxx--00,它可视为y=lgx图象上的动点(x,lgx)与原点连线的斜率,作出y=lgx的图象易…  相似文献   

7.
本文介绍椭圆双曲线离心率与其有关斜率的一个有趣关系式 ,并说明它的应用 ,供读者参考 .定理 l1是过椭圆 x2a2 + y2b2 =1 (a >b >0 )焦点F且与x轴垂直的直线 ,A ,l2 是与F相对应的顶点和准线 ,经过椭圆中心O作斜率为k的直线l与l1,l2 分别交于P ,Q两点 ,则AP⊥AQ的充要条件是k2 + 2 =e +1e(e是离心率 ) .证明 由对称性 ,不妨设F是左焦点 ,则l1,l2 的方程分别是x =-c和x =- a2c.又知l的方程为y =kx ,分别与l1,l2 的方程联立解得点P( -c ,-kc)和Q( - a2c,ka2c) .又知点A( -a ,0 ) ,所以AP⊥AQ kAPkAQ=- 1 - kca -c·- ka2ca - a2…  相似文献   

8.
椭圆有很多有趣的性质,本文再给出一个.性质1过椭圆x2a2 y2b2=1(a>b>0)的焦点斜率为k1的直线交椭圆于A、B两点,若C为线段AB的中点且直线OC的斜率为k2,则椭圆的离心率e满足e2=1 k1k2.证明设A、B两点的坐标分别为(x1,y1)、(x2,y2),则x21a2 y21b2=1,x22a2 y22b2=1.两式相减得x21-x  相似文献   

9.
由向量的内积:a·b=|a|·|b|·cosθ, 可得 因为 -1≤cosθ≤1, 所以有 这个结论在证明不等式时常常用到. 例1 已知口a2+b2+c2=1,x2+y2+z2= 1,其中a、b、c、x、y、z均为实数,求证: -1≤ax+by+cz≤1. 证明 设p=(a,b,c), q=(x,y,z), 则 ,即.  相似文献   

10.
玉宏图 《数学通讯》2003,(24):22-22
本刊文 [1]介绍了椭圆定义的几个变式 ,它为同学们学习椭圆拓宽了知识空间 .那么 ,双曲线定义的变式又如何呢 ?本文来研究这个问题 .为了讨论方便 ,先将课本对双曲线方程的推导过程摘录如下 :以两定点F1,F2 所在直线为x轴 ,线段F1F2中点为坐标原点 ,建立直角坐标系 ,设M (x ,y)是双曲线上任一点 ,F1(-c ,0 ) ,F2 (c,0 ) (c>a) ,则由双曲线定义得|MF1| - |MF2 | =± 2a (1)而 |MF1| =(x +c) 2 + y2 (2 )|MF2 | =(x -c) 2 + y2 (3)故得(x +c) 2 + y2 - (x -c) 2 + y2 =± 2a (4)移项平方得cx -a2 =±a (x -c) 2 + y2 (5 )再平方整理得(c…  相似文献   

11.
题目(2013江西高考文-20)椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率e=√3/2,a+b=3. (1)求椭圆C的方程; (2)如图1,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明:2m-k为定值.  相似文献   

12.
我们熟知的二次曲线和定斜率k的切线方程有如下对应关系: 椭圆双曲线抛物线求二次曲线的两条互相垂直的切线的交点轨迹,可利用之,以抛物线为例,写出斜率为k,-1/k的两切线方程 y=kx p/2k (1) y=-x/k P/2(-1/k) (2)联立消参得x=-p/2(准线)。用同样的方法,对椭圆有方程x~2 y~2=a~2 b~2,对双曲线有方程x~2 y~2=a~2-b~2(a≥b)。换用另一种方法,即“转参”方法,仍可较简  相似文献   

13.
题 73  双曲线 x2a2- y2b2 =1(a >0 ,b >0 )的左、右焦点分别为F1,F2 ,点P(x0 ,y0 )是双曲线右支上一点 ,且x0 >2a .I为△PF1F2 的内心 ,直线PI交x轴于Q点 ,若 |F1Q| =|PF2 | ,当a ,b变化时 ,求I分PQ的比λ的取值范围 (见图 1) .解 设双曲线半焦距为c ,则c =a2 +b2 .∵I为PQ的内分点 ,则λ =PIIQ=|PI||IQ| .由内角平分线定理知|PI||IQ| =|PF1||F1Q| =|PF2 ||F2 Q| .又∵ |F1Q| =|PF2 | .∴|PI||IQ| =|PF1||PF2 | ,可得|PI| - |IQ||IQ| =|PF1| - |PF2 ||PF2 | =2a|PF2 | ,|PI||IQ| =|F1Q||F2 Q| ,可得|PI| …  相似文献   

14.
共焦点的圆锥曲线有如下几个重要性质.   定理1 设椭圆x2/a12+y2/b12=1(a1>b1>0)和双曲线x2/a22-y2/b22=2(a2>0,b2>0)共焦点E(-c,0),F(c,0)(c>0),P是两曲线的一个交点,经过P点的椭圆和双曲线的切线的斜率分别为k1,k2,则k1k2=-1.……  相似文献   

15.
(2007年天津卷(理)22题)设椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点分别为F1、F2,A是椭圆上一点,AF2⊥F1F2,原点O到直线AF1的距离为1/3| OF1 |.(1)证明a=√(2b);(2)设Q1、Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.这里的D点轨迹是一个圆:x2+y2=2b2/3,是本题中由于a,b关系的特殊性决定了存在这样的圆,还是对于一般的椭圆x2/a2+y2/b2=1(a>b>0)皆有这样的结论呢?  相似文献   

16.
题 94  已知向量a =(1,1) ,b =(1,0 ) ,c满足a·c =0且 |a| =|c| ,b·c >0 .1)求向量c ;2 )若映射 f :(x ,y)→ (x′ ,y′) =xa + yc,①求映射 f下 (1,2 )的原象 ;②若将 (x ,y)看作点的坐标 ,问是否存在直线l使得直线上的任一点在映射f的作用下的点仍在直线上 ,若存在求出直线l的方程 ,否则说明理由 .解  1)设c =(m ,n) ,由题意得 :m +n =0 ,m2 +n2 =2 ,m·1+n·1>0解得 m =1,n =- 1.∴c=(1,- 1) .2 )①由题意x(1,1) + y(1,- 1) =(1,2 )得 x + y =1,x -y =2 , 解得x =32y =- 12∴ (1,2 )的原象是 (32 ,- 12 ) .②假设存在直线l适合题设 …  相似文献   

17.
根据圆锥曲线的统一定义所建立的椭圆、双曲线的统一方程为我们所熟知 ,笔者将椭圆、双曲线与直线进行类比得到它们的另外两种统一方程 ,现介绍如下 ,供同学们学习参考 .一、椭圆、双曲线的点离式方程与直线的点斜式方程 y -y1 =k(x -x1 )相类比 ,可以建立由椭圆、双曲线的离心率e及其上一点P(x1 ,y1 )所确定的方程 ,这种形式的方程称为椭圆、双曲线的点离式方程 .命题 1 若点P(x1 ,y1 )是离心率为e,且中心在坐标原点 ,焦点在坐标轴上的椭圆 (或双曲线 )上一点 ,则(1)当焦点在x轴上时 ,方程为y2 -y21 =(e2 -1) (x2 -x21 ) ;(2 )当焦点在y…  相似文献   

18.
设m是正偶数.证明了(A)若b是奇素数,且a=m|m~6-21m~4+35m~2-7|,b=|7m~6-35m~4+21m~2-1|,c=m~2+1,则Diophantine方程G:a~x+b~y=c~z仅有正整数解(x,y,z)=(2,2,7);(B)若m2863,且a=m|m~8-36m~6+126m~4-84m~2+9|,b=|9m~8-84m~6+126m~4-36m~2+1|,c=m~2+1,则Diophantine方程G仅有正整数解(x,y,z)=(2,2,9);(C)若a,b,c适合a=m|∑_(i=0)~((r-1)/2)(-1)~i(_(2i)~r)m~(r-2i-1)|,b=|∑_(i=0)~((r-1)/2)(-1)~i(_(2i+1)~r)m~(r-2i-1)|,c=m~2+1,r≡1(mod4),2|x,2|y,且b为奇素数或m145r(log r),则方程G仅有解(x,y,z)=(2,2,r).  相似文献   

19.
本文研究退化椭圆型方程-Δxu-(α+1)2|x|~(2α)Δyu=|u|~(p-1)u,(x,y)∈Rm×Rk和方程-Δxu-(α+1)2|x|~(2α)Δyu=|u|~(p-1)u,(x,y)∈Π的Liouville型定理,其中-Δx-(α+1)2|x|~(2α)Δy是Grushin算子,Π={(x,y)∈Rm×Rk:x10}或{(x,y)∈Rm×Rk:y10}.本文将证明,当1p(Q+2)/(Q-2)时,上述方程Morse指数有限的有界解只有零解,其中Q=m+(α+1)k为齐次空间的维数,因此,本文将Laplace方程的结果推广到含Grushin算子的方程.  相似文献   

20.
探究双曲线渐近三角形的一组性质   总被引:2,自引:0,他引:2  
1渐近三角形的定义如图1,设l是过双曲线xa22-by22=1(a>0,b>0)上的一点P(x0,y0)的切线,l与双曲线的两条渐近线分别交于点M,N,与x轴交于点Q,则称△OMN为双曲线的渐近三角形.2渐近三角形的性质图1性质1|OM|·|ON|=a2 b2证明切线l的方程为b2x0x-a2y0y=a2b2.与方程y=abx联立,解得M点的坐标为(bx0a-2bay0,bx0a-b2ay0).同理可得N点的坐标为(bx0a 2bay0,bx-0 aba2y0).从而|OM|·|ON|=(bx0a-2bay0)2 (bx0a-b2ay0)2·(bx0a 2bay0)2 (bx-0 aba2y0)2=|abbx0a-2a y0b|2·|abbx0a 2a y0b|2=a2b2(a2 b2)a2b2=a2 b2.由中点坐标公式可知,P是线段MN的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号