首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-P-coated nickel hollow spheres (NHSs) were prepared by electroless plating technology. The morphology and component content of Co-P coating varies with the change of sodium citrate concentration in elctroless plating solution. And as phosphorus content increases in coatings, resulting in smaller grain, coercivity of microspheres decreases. The microwave absorption properties of spheres-wax composite were investigated in the range of 2-18 GHz. Both permittivity and permeability increase with an increase of cobalt content in coatings. For composite layer, a minimal reflection loss (RL, −36.9 dB) of was predicted at 8.1 GHz with a thickness of 3 mm.  相似文献   

2.
Low-density (about 0.9 g/cm3) composite core-shell hollow microspheres with tunable magnetic properties were fabricated by Ni-Fe-P deposition on hollow glass microspheres (HGM) with modified electroless plating process. The effects of mole ratio of Fe2+/Ni2+, concentration of the reducer and pH value of the solution on the magnetic properties of the products were investigated. In conclusion, the increase in the mole ratio of Fe2+/Ni2+ and pH value of the solution could improve the soft magnetic properties of composite microspheres remarkably, while the increase in the concentration of NaH2PO2 had the opposite effect. The as-obtained metallic shells were amorphous and the crystallization got better with increased annealing temperature after plating. In addition, the saturation intensity of the composite microspheres was enhanced monotonically by increasing the annealing temperature. This work provided a facile and effective strategy to fabricate core-shell composite hollow microspheres with tailored magnetic properties.  相似文献   

3.
Spinel CoFe2O4 coating on the surface of hollow glass microspheres of low density was synthesized by co-precipitation method. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDS). The results show that CoFe2O4 coating on hollow glass microspheres can be achieved, and the coating layers are constituted by CoFe2O4 nanoparticles of mean size ca. 10 nm. The as-synthesized powder materials were uniformly dispersed into the phenolic cement, then the mixture was pasted on metal plate with the area of 200 mm×200 mm as the test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The results indicate that the coated CoFe2O4/hollow glass microspheres composites can be applied in lightweight and strong absorption microwave absorbers.  相似文献   

4.
The surface of carbonyl iron powder or a mixture of carbonyl iron and ferrite was coated with polymethylmethacrylate (PMMA) microspheres by a hybridization method to make hybrid powders, and then electromagnetic wave absorption properties of the hybrid composites prepared with these hybrid powders have been investigated. As for the carbonyl iron/PMMA hybrid composite, the reflection loss less than −20 dB could be achieved in a frequency range of 1.7–5.0 GHz when the composite thickness was below 5.00 mm. In the case of the carbonyl iron-ferrite/PMMA hybrid composite, a similar reflection loss was observed in a frequency range of 4.3–13.0 GHz. Thus, the addition of ferrite was found to be useful for achieving a large absorption in a wide frequency range, especially for higher frequency values. Simulated values for the minimum reflection loss are well agreed with actually measured ones, because of homogeneous distribution of carbonyl iron and/or ferrite in these hybrid composites.  相似文献   

5.
The electromagnetic and microwave absorption properties of the composites employing FeSi alloy powders with different particle sizes as absorbent and paraffin as matrix were investigated. The results showed that the particle size had significant influence on the electromagnetic and microwave absorption properties of the composites in the 2-7 GHz frequency range. By decreasing the particle size of FeSi alloy powders, both the complex permittivity and permeability of the composites increased to a certain extent. In addition, the microwave absorption properties were improved, and the frequency of absorption peak shifted towards lower frequency range. In other words, the micron-grade FeSi alloy powders with smaller particle size were more suitable to be used as absorbent in measured frequency region.  相似文献   

6.
The novel nano-scale Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres were synthesized from bis-phthalonitrile and FeCl3·6H2O through a simple solvent-thermal route. The morphology and structure of the hybrid microspheres were characterized by FTIR, XRD, SEM and TEM. These results showed that the hybrids were monodispersed solid microspheres and the morphology can be adjusted by controlling the addition of bis-phthalonitrile. On the basis of these results, the formation process was discussed. Magnetization measurement indicated that saturation magnetizations decreased linearly with increasing the addition of bis-phthalonitrile, while coercivities increased. The microwave absorption properties were measured by a vector network analyzer. The dielectric loss of the hybrid microspheres was larger and a new magnetic loss peak appeared at high frequency. The microwave absorbing properties enhanced with increasing the addition of bis-phthalonitrile and a maximum reflection loss of −31.1 dB was obtained at 8.6 GHz with 1 g bis-phthalonitrile when the matching thickness was 3.0 mm. The novel hybrid materials are believed to have potential applications in the microwave absorbing performances.  相似文献   

7.
Amorphous FeCoNiB coatings were deposited by an electroless plating technique on the hollow glass microspheres. NiCoZn spinel ferrites sintered show two dispersion peaks (1.81 and 6.98 GHz). By fitting its permeability dispersion spectra, the one at low frequency is believed to be due to the domain wall movement mechanism, the other one is due to the spin rotation mechanism. Used in a single-layer absorber structure, neither the hollow glass microspheres coated nor the NiCoZn could meet the demand of light weight. However, if a double-layer absorber structure is used, not only the total weight of an absorber is reduced, but also the microwave absorption performance is enhanced.  相似文献   

8.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

9.
The rod-shaped Co-Ni-P shells were prepared by metalling Bacillus. The microstructures and composition of the shells were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis (EDS). The electromagnetic parameters were measured by the coaxial line method in the frequency of 2-18 GHz. It was found that the Bacillus were successfully coated with Co-Ni-P, and the inner structure of the shells are hollow in structure. The shells exhibit excellent microwave absorption properties in 5-17 GHz frequency. The microwave reflection loss is above −10 dB in 5.38-16.6 GHz frequency. The maximum microwave reflection loss reaches −35.83 dB at 9.12 GHz for samples thickness 2.4 mm, and the widest bandwidth for microwave reflection loss above −10 dB is about ∼5.32 GHz for samples thickness 2.0 mm. These results confirm the feasibility of applying Bacillus as biotemplates for fabrication of the metallic shells as lightweight microwave absorption materials are very promising for applications.  相似文献   

10.
利用自反应淬熄法制备了一种M型钡铁氧体空心陶瓷微珠材料,在此基础上,对其表面进行超声波化学镀Ni-Co复合层,从而形成了具有核/壳/腔结构的材料;通过扫描电子显微镜、能谱仪和X射线衍射仪分析表明,该材料具有中空结构,主要物相BaFe12O19为M型钡铁氧体,经过化学镀后,在其表面形成了一层Ni-Co复合层;经过吸波性能测试,化学镀Ni-Co复合层后,在2~18GHz范围内,当厚度为2.10mm时,最低反射率达到了-28.62dB,反射率小于-10dB的带宽为3.33GHz。  相似文献   

11.
The hollow structural submicrometer-sized nickel spheres were successfully fabricated by the autocatalytic reduction method. Because of the metallic and ferromagnetic behaviour of the nickel spheres, the low-density microspheres could obtain high dielectric constant and magnetic loss in microwave frequencies. The abrupt variation of the real part and the sharp peaks of the imaginary part of permittivity and permeability were observed for the micrometer-sized and nanometer-sized nickel hollow spheres. Reflection loss less than −25 dB were predicted over 11 GHz with a thickness of 1.5–2.0 mm.  相似文献   

12.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

13.
A new type of Co-Ni-P coated strontium ferrite nanocomposite was prepared with electroless plating enhanced by ultrasonic wave at room temperature. The plating process was studied carefully. The morphology, crystal structure and microwave absorption properties of the Co-Ni-P coated powder were studied with field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDX) and vector network analyzer. The results show that the strontium ferrite powder was successfully coated with Co-Ni-P alloy and possesses excellent microwave absorption properties. The maximum microwave loss of the composite powder reaches −44.12 dB. The bandwidth with the loss above −10 dB exceeds 13.8 GHz.  相似文献   

14.
Nanoplates of the MgAl2O4 spinel doped with Eu3+ ions were prepared by a microwave assisted hydrothermal method. Structural properties of the precursor calcined at 700 and 1000 oC powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to the obtained XRD patterns the formation of single-phase spinels after calcination was confirmed. The average spinel particle size was determined to be 11 nm after calcination at 700 °C and it increased up to 14 nm after calcination at 1000 °C. The photoluminescent properties of prepared powders with different Eu3+ ion concentrations (0-5% mol) were investigated using excitation and emission spectroscopy at room and low temperatures (77 K).  相似文献   

15.
To solve more and more serious electromagnetic interference problem, one thin microwave absorbing sheet employing carbonyl-iron powder (CIP) and chlorinated polyethylene (CPE) was prepared. The pattern, static magnetic properties and phase of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD), respectively. The electromagnetic parameters of CIP were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanisms of the powder were discussed. The microwave absorption properties of composite sheets with different thicknesses and CIP ratios in matrix were investigated by measuring reflection loss (RL) in 2-18 GHz frequency range using the arch method. The results showed that appropriate CIP content and thickness could greatly improve microwave absorption properties in lower frequency range. For the sample with the weight ratio (CIP:CPE) of 16:1 and 1.5 mm thickness, the bandwidth (RL below −10 dB) achieved 1.1 GHz (2-3.1 GHz), and the minimum reflection loss value was obtained −13.2 dB at 2.2 GHz. This suggested that CIP/CPE composites could be applied as thin microwave absorbers in S-band (2-4 GHz).  相似文献   

16.
The preparation, microstructure development and dielectric properties of Bi1.5ZnNb1.5O7 pyrochlore ceramics by metallo-organic decomposition (MOD) route are reported. Homogeneous precalcined ceramic powders of 13-36 nm crystallite size were obtained at temperatures ranging from 500 to 700 °C. The thermal decomposition/oxidation of the gelled precursor solution was chemically analyzed, TG/DTA, XRD, and SEM, led to the formation of a pure cubic pyrochlore phase with a stoichiometry close to Bi1.5ZnNb1.5O7 which begins to form at 500 °C. The metallo-organic precursor synthesis method, where Bi, Zn and Nb ions are chelated to form metal complexes, allows the control of Bi/Zn/Nb stoichiometric ratio on a molecular scale leading to the rapid formation of bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramic fine powders with pure pyrochlore structure. The powders were pressed into pellets and can be sintered at temperatures as low as 800-1000 °C. Fine crystalline ceramics with the grain size in the range of 200-500 nm have been obtained at the sintering temperature of 800 °C. The dielectric properties in high frequency to microwave range were measured and discussed.  相似文献   

17.
Polyhedral cobalt microcrystals assembled on hollow glass spheres are successfully synthesized by a facile and easy-control hydrothermal reduction process, and thus hierarchical glass/cobalt core/shell composite hollow spheres are fabricated with low-density (0.96 g cm−3). By properly tuning the process conditions and the component of the reaction solution, a series of composite spheres with gradient in morphologies of the shell layer can be prepared. Based on a series of contrast experiments, the probable formation mechanism of the core/shell hierarchical structures is proposed. The magnetic properties of the products are studied and the results demonstrate that the composite spheres present ferromagnetic properties related to the special shell morphologies. The composite hollow spheres thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, and catalysis, etc. This work provides an additional strategy to prepared core/shell composite spheres with tailored shell morphology and magnetic properties.  相似文献   

18.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

19.
As a kind of soft magnetic metallic material, flaky FeSiAl powders have been studied and used widely. Transition metal chromium can improve the magnetic properties of FeSiAl. This article prepared Fe85Si9.5-xAl5.5Crx (x=0, 2, 4, 6 wt%) alloys powders by adding chromium to replace silicon in alloys. The morphology and microstructure of alloys powders were studied, electromagnetic parameters were measured and microwave absorption properties in the frequency range from 0.5 to 18 GHz were analyzed. With the increase of Cr content, α-Fe (Al, Si) superlattice phases appeared in alloys powders, and then disappeared. Excessive Cr precipitated from the alloys when its content reaches 6 wt%. The minimum reflection loss (-20 dB) among the four powders was 2 wt% Cr content at the frequency of 11.5 GHz. The peaks of reflection loss shifted to the low frequency range with increase in Cr content.  相似文献   

20.
Microspheres are novel candidate materials for microcarriers and tissue-engineering scaffolds. Chitosan microspheres were selected as the base materials because of their excellent properties for biomedical applications. But their smooth surfaces were not adapted for cell attachment. Hence, in order to improve the roughness of chitosan microspheres, β-TCP/chitosan composite microspheres were developed. From SEM photographs, the coarse surfaces of composite microspheres were observed, there were some ceramic particles standing out of the chitosan matrix. And their roughness measured by profilometers was about 2.0 μm. Mouse MC3T3-E1 osteoblasts were seeded on the microspheres for evaluating the attachment interaction between cells and materials. According to the ESEM photographs and MTT assay, the adherence and proliferation of osteoblasts on the surfaces of modified microspheres were better than those on the chitosan microspheres, which were mainly attributed to the improved roughness of surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号