首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied.Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.  相似文献   

2.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

3.
This study describes the formation of a bilayer system developed on electrodeposited zinc. In a first step, a monolayer of 11-mercapto-1-undecanol is grafted on zinc, optimization of the conditions of elaboration have been performed. In a second step, organotrimethoxysilane have been grafted on the zinc modified with the hydroxyl terminated self-assembled monolayer (SAM) to finalize the bilayer system. X-ray photoelectron spectroscopy (XPS), polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) and contact angle measurements are used to characterize each step of modification. An electrochemical evaluation of the different created systems is carried out by linear sweep voltammetry (LSV), cyclic voltammetry (CV) and scanning vibrating electrode technique (SVET). The impact of the modification of zinc using SAM and self-assembled bilayer (SAB) on the electrochemical activity of the surface is highlighted.  相似文献   

4.
Nanosized TiO2 particles were prepared by sol-gel method. The TiO2 particles were co-deposited with zinc from a sulphate bath at pH 4.5 using electrodeposition technique. The corrosion behavior of the coatings was assessed by electrochemical polarization, impedance, weight-loss and salt spray tests. Wear resistance and microhardness of the composite coating was measured. The smaller grain size of the composite coatings was observed in the presence of TiO2 and it was confirmed by the images of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques.  相似文献   

5.
Through a one-step thermal reaction, Au nanoparticles were synthesized and self-assembled mixed films of Au nanoparticles and n-hexylthiol were prepared on iron surface. The size distribution and shape of Au nanoparticles were examined using transmission electron microscopy (TEM). Results of two electrochemical methods - electrochemical impedance spectroscopy (EIS) and polarization curves indicate that self-assembled mixed films can form on the iron surface and prevent it from corrosion effectively. Energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) measurements were applied to identify the formation of the mixed films on iron surface.  相似文献   

6.
Poly(o-anisidine) (POA) coatings were synthesized on brass by electrochemical polymerization of o-anisidine in aqueous salicylate solution by using cyclic voltammetry. These coatings were characterized by cyclic voltammetry, UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion protection aspects of POA coatings on brass in aqueous 3% NaCl solution were investigated by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The potentiodynamic polarization measurements show that the POA coating has ability to protect the brass against corrosion. The corrosion potential was about 0.204 V versus SCE more positive for the POA coated brass than that of uncoated brass and reduces the corrosion rate of brass almost by a factor of 800. The corrosion behavior of the POA coatings was also investigated by EIS through immersion tests performed in aqueous 3% NaCl solution. The evolution of the impedance parameters with the immersion time was studied and the results show that the POA acts as a protective coating on brass against corrosion in 3% NaCl solution. The water uptake and delamination area were also determined to further support the corrosion protection performance of the POA coating.  相似文献   

7.
Influence of ferric iron on the electrochemical behavior of pyrite   总被引:1,自引:0,他引:1  
The electrochemical behavior of a pyrite electrode in a sulfuric acid solution with different concentrations of ferric iron (Fe3+) was investigated using electrochemical techniques including measurements of open circuit potential, cyclic voltammetry, Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The results show that the pyrite oxidation process takes place via a two-step reaction at the interface of the pyrite electrode and the electrolyte, and that a passivation film composed of elemental sulfur, polysulfides, and metal-deficient sulfide is formed during the process of the first-step reaction. Ferric iron plays an important role in the dissolution of pyrite by enhancing the direct oxidation. The Tafel polarization curves indicate that the polarization current of the pyrite electrode increases with an increase in Fe3+ concentration. It has also been shown that the higher concentration of Fe3+, the more easily the pyrite can be transformed into the passivation region. Moreover, the EIS response is found to be sensitive to changes in Fe3+ concentration.  相似文献   

8.
Ionic liquid “ECOENG? 110”, a promising electrolyte for electrochemical devices, was investigated by impedance spectroscopy. Metallic electrodes (Pt, Cu, Ag, and Mo) as well as carbon were used for the electrochemical characterization. The dependences of the real and imaginary impedance, polarization resistance and electrochemical capacity of the double layer on the electrode potential were investigated using electrical equivalent circuits of R1(QR2) and R1[Q(R2W)] types.  相似文献   

9.
In this study, the effect of ascorbic acid in the electrochemical behavior of copper has been investigated in 3.5 % NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy. Current-potential curve and Nyquist diagrams were obtained in different concentrations of ascorbic acid. The surface morphology of copper after its exposure to 3.5 % NaCl solution with and without of ascorbic acid was examined by scanning electron microscopy. The obtained results show that ascorbic acid inhibits corrosion of copper in 3.5 % NaCl solution. The inhibition activity of ascorbic acid increases with a decrease in the concentration of ascorbic acid.  相似文献   

10.
Electrochemical synthesis of polypyrrole (PPy) film was achieved on mild steel (MS), in monomer containing 0.1 M phenylphosphonic acid solution. The synthesis was carried out using cyclic voltammetry technique. It was found that the electrode surface could only become completely passive, after a few successive cycles in solution of 0.1 M pyrrole + 0.1 M phenylphosphonic acid. Then, the thickness of polymer film was increased with help of successive cycles in a relatively narrower potential range. The corrosion performance of polymer coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy (EIS) and anodic polarization curves. It was shown that the coating had high stability and low permeability, under such aggressive conditions. The EIS results also showed that the coating exhibited important anodic protection behaviour on mild steel. The percent protection efficiency value (E%) was found to be 98.4% and the percent total porosity value (P%) was determined to be 0.752%, after 96 h exposure time to corrosive solution.  相似文献   

11.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

12.
The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.  相似文献   

13.
《X射线光谱测定》2003,32(5):387-395
Human dental calculi are biological calcium phosphates, which consist of an organic phase and an inorganic or mineral phase. In the latter phase, spectrochemical analyses have revealed the presence of several different magnesium and calcium phosphates. As the crystalline structure of the calculus passes through several stages during its allocation in the mouth, special attention is paid to some elements, such as zinc, that can modify the mineralization process. Several in vitro studies relating to the dental calculus mineralization process have been performed so far, but there is a lack of data obtained from biologically synthesized samples. The knowledge of the zinc distribution and incorporation in biological calcium phosphates is of great interest in providing more information about the biological process of calculus formation. In this paper we present surveys of the elemental distribution and incorporation of zinc in human dental calculus, by using a combination of different techniques: x‐ray microfluorescence using synchrotron radiation, scanning electron microscopy and x‐ray absorption spectroscopy. One‐dimensional x‐ray microfluorescence of zinc and magnesium measurement shows that there is a high accumulation of both elements in the sub‐gingival region of the calculus and a strong correlation of their spatial distribution. Experimental Ca/P molar ratios were determined by energy‐dispersive spectroscopy to identify different calcium phosphate phases, the sub‐gingival region being composed of a mixture of highly and poorly calcified phosphates and the supra‐gingival region composed mainly of carbonated hydroxyapatite. Finally, x‐ray absorption measurements were carried out at the zinc K edge on synthetic and biological samples. The Zn—O distance and coordination number of the synthetic samples and the supra‐gingival calculus show that zinc is adsorbed on these structures, whereas in the sub‐gingival samples it is allocated in a cation site. The results are indicative of the active participation of zinc in the calcification process of sub‐gingival calculus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
《Current Applied Physics》2010,10(3):923-929
Anti-corrosive properties of natural honey on Al–Mg–Si alloy in seawater were evaluated by potentiodynamic polarization (PP), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. All the studied parameters showed good anti-corrosive properties against the corrosion of Al–Mg–Si alloy in the tested solution and their performance increases with corrosion resistant concentration. Polarization data indicated that natural honey is a mixed-type corrosion resistant. LPR and EIS studies showed that there were significant increases in the overall resistance after the addition of natural honey. The adsorption of natural honey on the metal surface obeys Langmuir adsorption isotherm. The analysis of morphology studies confirmed the formation of precipitates of natural honey on the metal surface, which reduced the overall corrosion reaction.  相似文献   

15.
The effect of heat treatment on the corrosion behavior of reactive plasma sprayed TiN coatings in simulated seawater was investigated by electrochemical methods such as the corrosion potential-time curve (Ecorr − t), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and SEM, etc. The results showed that the corrosion potential of TiN coatings increased after heat treatment; the corrosion current of the TiN coatings after heat treatment (be hereafter referred to as HT-TiN) was 13.3% of the untreated coatings (be hereafter referred to as UT-TiN), and the polarization resistance of HT-TiN was 20 times of UT-TiN, which indicated that the heat treatment had significantly increased the corrosion resistance of the coatings. The corrosion behavior of the coatings was mainly local corrosion, and the local corrosion behavior mainly took place at the microdefects (crack and pores) of the coatings. The porosity of the coatings was reduced after heat treatment. The reason was that TiN reacted with O2 to form TiO2 and Ti3O during the heat treating, and volume expansion took place, which led to denser microstructure. The corrosion resistance of the coatings was therefore increased.  相似文献   

16.
Electrochemically anticorrosive behaviors of 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTTL) monolayers self-assembled on copper surface have been investigated by electrochemical impedance spectroscopy (EIS), electrochemical polarization measurement and surface-enhanced Raman scattering (SERS) spectroscopy. The EIS mechanism of the copper surface adsorbed with 4-MTTL monolayers was fitted with the mode of R(QR)(QR)(CR). The electrochemical polarization experimental results indicated the high inhibitive efficiency of about 81.1%. Potential dependent SERS result suggests that 4-MTTL molecule was anchored at the copper surface via S6 and N2 atoms with a tilted orientation, which resulting in a strong interaction between the 4-MTTL molecule and copper surface. The molecule tended to experience a transition state of the adsorption at the copper surface via S6 atom only as the potential applied at −0.5 V vs. SCE.  相似文献   

17.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) microporous membranes were prepared via thermally induced phase separation (TIPS) process. Then they were immersed in a liquid electrolyte to form polymer electrolytes. The effects of polymer content in casting solution on the morphology, crystallinity, and porosity of the membranes were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and a mercury porosimeter, respectively. Ionic conductivity, lithium-ion transference number, and electrochemical stability window of corresponding polymer electrolytes were characterized by AC impedance spectroscopy, DC polarization/AC impedance combination method, and linear sweep voltammetry, respectively. The results showed that spherulites and “net-shaped” structure coexisted for the membranes. Polymer content had no effect on crystal structure of the membranes. The maximum transference number was 0.55. The temperature dependence of ionic conductivity followed the Vogel–Tammann–Fulcher (VTF) relation. The maximum ionic conductivity was 2.93 × 10−3 Scm−1 at 20 °C. Electrochemical stability window was stable up to 4.7 V (vs. Li+/Li).  相似文献   

18.
A type of stearic imidazoline (IM) inhibitor was prepared using stearic acid (SA) and diethylenetriamine (DETA) as raw materials. The monolayers of IM and SA were assembled on the iron surface. The electrochemical characterization of stearic acid (SA) and stearic imidazoline (IM) on an oxide free iron surface had been studied. The monolayers of IM inhibitor were characterized by electrochemical impedance spectroscopy (EIS), electrochemical polarization curves, double layer capacitance, X-ray photoelectron spectroscopy (XPS) and molecular simulation. The results of electrochemical studies had illustrated that the inhibition efficiency of IM was higher than SA. XPS showed that the IM molecules adsorbed on the iron surface. The molecular simulation calculations showed that the IM molecules were tilted at an angle on the iron surface.  相似文献   

19.
The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H2SO4 markedly.  相似文献   

20.
The corrosion inhibitive effect of 3-(3-oxo-3-phenyl-propenyl)-1H-quinolin-2-one (PPQ) and 3-(3-oxo-3-phenyl-propenyl)-1H-benzoquinolin-2-one (PPBQ) on high carbon steel (HCS) in 10 % HCl media was evaluated by chemical (weight loss) and electrochemical (electrochemical impedance spectroscopy and potentiodynamic polarization technique) measurements. The inhibition efficiencies obtained from weight loss and electrochemical measurements were in good agreement. The inhibition efficiency was found to increase with the increase in inhibitor concentration but decreased with rise in temperature. Potentiodynamic polarization studies revealed the mixed mode inhibition of inhibitors. The adsorption behavior of these inhibitors on the HCS surface was found to obey the Langmuir adsorption isotherm. The thermodynamic parameter values of free energy of adsorption (?G ads) and enthalpy of adsorption (?H ads) revealed that the inhibitor was adsorbed on the HCS surface via both chemisorption and physisorption mechanisms. The adsorption mechanism of inhibition was supported by spectroscopic techniques (UV–visible, FT-IR, and wide-angle X-ray diffraction), surface analysis (SEM–EDS), and adsorption isotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号