首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-cycle fatigue (LCF) tests on as-cast Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders was carried out using a noncontact strain-controlled system at 20°C with a constant frequency of 0.1 Hz. The addition of Cu does not significantly affect the fatigue life of eutectic Sn-Ag solder. However, the fatigue life was significantly reduced with the addition of Bi. The LCF behavior of all solders followed the Coffin-Manson relationship. The fatigue life of the present solders is dominated by the fracture ductility and can be described by the ductility-modified Coffin-Manson’s relationship. Steps at the boundaries of dendrite phases were the initiation sites for microcracks for Sn-3.5Ag, Sn-3Ag-0.5Cu, and Sn-3Ag-0.5Cu-1Bi solders, while for Sn-3Ag-0.5Cu-3Bi solder, cracks initiated along both the dendrite boundaries and subgrain boundaries in the dendrite phases. The linking of these cracks and the propagation of cracks inside the specimen occurred both transgranularly through eutectic phases and intergranularly along dendrite boundaries or subgrain boundaries.  相似文献   

2.
Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.  相似文献   

3.
This work investigates the effect of reflow and the thermal aging process on the microstructural evolution and microhardness of five types of Sn-Ag based lead-free solder alloys: Sn-3.7Ag, Sn-3.7Ag-1Bi, Sn-3.7Ag-2Bi, Sn-3.7Ag-3Bi, and Sn-3.7Ag-4Bi. The microhardness and microstructure of the solders for different cooling rates after reflow at 250°C and different thermal aging durations at 150°C for air-cooled samples have been studied. The effect of Bi is discussed based on the experimental results. It was found that the microhardness increases with increasing Bi addition to Sn-3.7Ag solder regardless of reflow or thermal aging process. Scanning electron microscopy images show the formation of Ag3Sn particles, Sn-rich phases, and precipitation of Bi-rich phases in different solders. The increase of microhardness with Bi addition is due to the solution strengthening and precipitation strengthening provided by Bi in the solder. The trend of decrease in microhardness with increasing duration of thermal aging was observed.  相似文献   

4.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

5.
A comparative study of solid/solid interfacial reactions of electroless Ni-P (15 at.% P) with lead-free solders, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and pure Sn, was carried out by performing thermal aging at 150°C up to 1000 h. For pure Sn and Sn-3.5Ag solder, three distinctive layers, Ni3Sn4, SnNiP, and Ni3P, were observed in between the solder and electroless Ni-P; while for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders, two distinctive layers, (CuNi)6Sn5 and Ni3P, were observed. The differences in morphology and growth kinetics of the intermetallic compounds (IMCs) at the interfaces between electroless Ni-P and lead-free solders were investigated, as well as the growth kinetics of the P-enriched layers underneath the interfacial IMC layers. With increasing aging time, the coarsening of interfacial Ni3Sn4 IMC grains for pure Sn and Sn-3.5Ag solder was significantly greater than that of the interfacial (CuNi)6Sn5 IMC grains for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders. Furthermore, the Ni content in interfacial (CuNi)6Sn5 phase slightly increased during aging. A small addition of Cu (0.7 wt.%) resulted in differences in the type, morphology, and growth kinetics of interfacial IMCs. By comparing the metallurgical aspects and growth kinetics of the interfacial IMCs and the underneath P-enriched layers, the role of initial Cu and Ag in lead-free solders is better understood.  相似文献   

6.
Intermetallic growth between Pd and the lead-free solders Sn-Ag and Sn-Ag-Cu has been studied. Diffusion couples were prepared by reflowing the solders on Pd and then aging the couples at 156°C, 175°C, 195°C, and 210°C. At the higher temperatures of 175°C, 195°C, and 210°C, PdSn4 made up most of the layer that grew between the solders and the Pd, although small regions of second phases were always found in the PdSn4 matrix, and it was sometimes possible to identify discontinuous regions of PdSn3 next to the Pd. The thickness of the intermetallic layer increased with the square root of time, consistent with diffusion-controlled growth. In couples annealed at 156°C, the morphology of the PdSn3 phase and growth kinetics differed depending on the composition of the solder.  相似文献   

7.
The interfacial reaction in soldering is a crucial subject for the solder-joint integrity and reliability in electronic packaging technology. However, electronic industries are moving toward lead-free alloys because of environmental concerns. This drive has highlighted the fact that the industry has not yet arrived at a decision for lead-free solders. Among the lead-free alloys, Sn-3.5Ag and Sn-3.5Ag-0.5Cu are the two potential candidates. Here, detailed microstructural studies were carried out to compare the interfacial reaction of Sn-3.5Ag and Sn-3.5Ag-0.5Cu solder with a ball grid array (BGA) Cu substrate for different reflow times. The Cu dissolution from the substrate was observed for different soldering temperatures ranging from 230°C to 250°C, and the dissolution was found to increase with time and temperature. Dissolution of Cu in the Sn-3.5Ag solder is so fast that, at 240°C, 12 μm of the Cu substrate is fully consumed within 5 min. Much less dissolution is observed for the Sn-3.5Ag-0.5Cu solder. In respect to such high dissolution, there is no significant difference observed in the intermetallic compound (IMC) thickness at the interface for both solder alloys. A simplistic theoretical approach is carried out to find out the amount of Cu6Sn5 IMCs in the bulk of the solder by the measurement of the Cu consumption from the substrate and the thickness of the IMCs that form on the interface.  相似文献   

8.
A comparative study of the kinetics of interfacial reaction between the eutectic solders (Sn-3.5Ag, Sn-57Bi, and Sn-38Pb) and electroplated Ni/Pd on Cu substrate (Cu/Ni/NiPd/Ni/Pd) was performed. The interfacial microstructure was characterized by imaging and energy dispersive x-ray analysis in scanning electron microscope (SEM). For a Pd-layer thickness of less than 75 nm, the presence or the absence of Pd-bearing intermetallic was found to be dependent on the reaction temperature. In the case of Sn-3.5Ag solder, we did not observe any Pd-bearing intermetallic after reaction even at 230°C. In the case of Sn-57Bi solder the PdSn4 intermetallic was observed after reaction at 150°C and 180°C, while in the case of Sn-38Pb solder the PdSn4 intermetallic was observed after reaction only at 200°C. The PdSn4 grains were always dispersed in the bulk solder within about 10 μm from the solder/substrate interface. At higher reaction temperatures, there was no Pd-bearing intermetallic due to increased solubility in the liquid solder. The presence or absence of Pd-bearing intermetallic was correlated with the diffusion path in the calculated Pd-Sn-X (X=Ag, Bi, Pb) isothermal sections. In the presence of unconsumed Ni, only Ni3Sn4 intermetallic was observed at the solder-substrate interface by SEM. The presence of Ni3Sn4 intermetallic was consistent with the expected diffusion path based on the calculated Ni-Sn-X (X=Ag, Bi, Pb) isothermal sections. Selective etching of solders revealed that Ni3Sn4 had a faceted scallop morphology. Both the radial growth and the thickening kinetics of Ni3Sn4 intermetallic were studied. In the thickness regime of 0.14 μm to 1.2 μm, the growth kinetics always yielded a time exponent n >3 for liquid-state reaction. The temporal law for coarsening also yielded time exponent m >3. The apparent activation energies for thickening were: 16936J/mol for the Sn-3.5Ag solder, 17804 J/mol for the Sn-57Bi solder, and 25749 J/mol for the Sn-38Pb solder during liquid-state reaction. The corresponding activation energies for coarsening were very similar. However, an apparent activation energy of 37599 J/mol was obtained for the growth of Ni3Sn4 intermetallic layer during solid-state aging of the Sn-57Bi/substrate diffusion couples. The kinetic parameters associated with thickening and radial growth were discussed in terms of current theories.  相似文献   

9.
The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.  相似文献   

10.
This study was focused on the formation and reliability evaluation of solder joints with different diameters and pitches for flip chip applications. We investigated the interfacial reaction and shear strength between two different solders (Sn-37Pb and Sn-3.0Ag-0.5Cu, in wt.%) and ENIG (Electroless Nickel Immersion Gold) UBM (Under Bump Metallurgy) during multiple reflow. Firstly, we formed the flip chip solder bumps on the Ti/Cu/ENIG metallized Si wafer using a stencil printing method. After reflow, the average solder bump diameters were about 130, 160 and 190 μm, respectively. After multiple reflows, Ni3Sn4 intermetallic compound (IMC) layer formed at the Sn-37Pb solder/ENIG UBM interface. On the other hand, in the case of Sn-3.0Ag-0.5Cu solder, (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were formed at the interface. The shear force of the Pb-free Sn-3.0Ag-0.5Cu flip chip solder bump was higher than that of the conventional Sn-37Pb flip chip solder bump.  相似文献   

11.
Three kinds of Sn-Ag-based lead-free solders, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge, and Sn-3.5Ag-0.07Ni (in wt.%), were selected to explore the effect of microelements (Ni and Ge) on the interfacial reaction between the solder and the Cu substrate. The thickness of the interfacial intermetallics formed with the Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge and Sn-3.5Ag-0.07Ni solders is several times that of the Sn-3.5Ag-0.7Cu solder. The added microelements converted the feature of interfacial intermetallics from pebble shape to worm shape. However, the results of x-ray diffraction (XRD) analysis suggest that the interfacial intermetallics formed with both solders have the same crystal structure. The results of energy dispersive spectroscopy (EDS) analysis show that the major interfacial intermetallic formed with the Sn-3.5Ag-0.7Cu solder is Cu6Sn5, while it is (Cux,Ni1−x)6Sn5 with Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge. Ni influences the interfacial intermetallics and plays the influential role on the difference of interfacial reaction rate between liquid solder and solid Cu and the morphology of interfacial intermetallics. Additionally, the growth kinetics of the interfacial intermetallic compounds (IMCs) formed in the systems of Cu/Sn-3.5Ag-0.7Cu and Cu/Sn-3.5Ag-0.07Ni at high-temperature storage was also explored.  相似文献   

12.
The tensile strengths of bulk solders and joint couples of Sn-3.5Ag-0.5Cu, Sn-3.5Ag-0.07Ni, and Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge solders and the shear strengths of ball grid array (BGA) specimens, solder-ball-attached Cu/Ni/Au metallized substrates were investigated. The tensile strength of the bulk is degraded by thermal aging. The Ni-containing solder exhibits lower tensile strength than Sn-3.5Ag-0.5Cu after thermal aging. However, the Ni-containing solder joints show greater tensile strength than the Cu/Sn-3.5Ag-0.5Cu/Cu joint. Fracture of the solder joint occurs between the intermetallic compound (IMC) and the solder. The shear strength and fracture mechanism of BGA specimens are the same regardless of solder composition.  相似文献   

13.
This study included a comparison of the baseline Sn-3.5Ag eutectic to one near-eutectic ternary alloy, Sn-3.6 Ag-1.0Cu and two quaternary alloys, Sn-3.6Ag-1.0Cu-0.15Co and Sn-3.6Ag-1.0 Cu-0.45 Co, to increase understanding of the beneficial effects of Co on Sn-Ag-Cu solder joints cooled at 1–3 C/sec, typical of reflow practice. The results indicated that joint microstructure refinement is due to Co-enhanced nucleation of the Cu6Sn5 phase in the solder matrix, as suggested by Auger elemental mapping and calorimetric measurements. The Co also reduced intermetallic interface faceting and improved the ability of the solder joint samples to maintain their shear strength after aging for 72 hr at 150 C. The baseline Sn-3.5Ag joints exhibited significantly reduced strength and coarser microstructures.  相似文献   

14.
The wettability of newly developed Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu and Ni substrates was assessed through the wetting balance tests. The wettability assessment parameters such as contact angle (ϑc) and maximum wetting force (Fw) were documented for three solder bath temperatures with three commercial fluxes, namely, no-clean (NC), nonactivated (R), and water-soluble organic acid flux (WS). It was found that the lead-free Sn-2.8Ag-0.5Cu-1.0Bi solder exhibited less wetting force, i.e., poorer wettability, than the conventional Sn-37Pb solder for all flux types and solder bath temperatures. The wettability of Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu substrate was much higher than that on Ni substrate. Nonwetting for Sn-2.8Ag-0.5Cu-1.0Bi and Sn-Pb solders on Ni substrate occurred when R-type flux was used. A model was built and simulations were performed for the wetting balance test. The simulation results were found very close to the experimental results. It was also observed that larger values of immersion depth resulted in a decrease of the wetting force and corresponding meniscus height, whereas the increase in substrate perimeter enhanced the wettability. The wetting reactions between the solder and Cu/Ni substrates were also investigated, and it was found that Cu atoms diffused into the solder through the intermetallic compounds (IMCs) much faster than did the Ni atoms. Rapid formation of IMCs inhibited the wettability of Sn-2.8Ag-0.5Cu-1.0Bi solder compared to the Sn-Pb solder.  相似文献   

15.
The 0.2Co + 0.1Ni dual additives were used to dope a Sn-3.5Ag solder matrix to modify the alloy microstructure and the solder joint on an organic solderability preservative (OSP) Cu pad. The refined microstructure of the Sn-3.5Ag-0.2Co-0.1Ni solder alloy or the reduced β-Sn size was attributed to the depressed undercooling achieved by the Co-Ni addition. After soldering on the OSP Cu pad, a large Ag3Sn plate was formed at the Sn-3.5Ag/OSP solder joint, whereas it was absent at the Sn-3.5Ag-0.2Co-0.1Ni/OSP solder joints. With isothermal aging at 150°C, large Ag3Sn plates formed at the Sn-3.5Ag/OSP solder joint were still observed. A coarsened and dispersed Ag3Sn phase was found in the solder joints with Co-Ni additions as well. Compared to Cu6Sn5, the (Co,Ni)Sn2 intermetallic compound showed much lower microhardness values. However, (Co,Ni)Sn2 hardness was comparable to that of the Ag3Sn phase. Pull strength testing of Sn-3.5Ag-0.2Co-0.1Ni/OSP revealed slightly lower values than for Sn-3.5Ag/OSP during aging. Such results are thought be due to the phase transformation of (Co,Ni)Sn2 to (Cu,Co,Ni)6Sn5.  相似文献   

16.
A Pb-free composite solder is prepared with a Pb-free solder substrate and a plated-indium layer. The indium layer melts during the soldering process, wets the substrates, and forms a sound solder joint. Since the melting temperature of indium is 156.6°C, lower than that of the eutectic Sn-Pb, which is at 183°C, the soldering process can be carried out at a temperature lower than that of the conventional soldering process. Composite solder joints with three different Pb-free solders, Sn, Sn-3.5 wt.% Ag, and Sn-3.5 wt.% Ag-0.5 wt.% Cu, and two substrates, Ni and Cu, are prepared. The interfaces between the indium layer, Pb-free solder, and Ni and Cu substrate are examined. A good solder joint is formed after a 2-min reflow at 170°C. A very thick reaction zone at the indium/Pb-free solder interface and a thin reaction layer at the indium/substrate interface are observed.  相似文献   

17.
Self-aligned electroplating is applied to form the Cu pillar/Sn-Ag bump for semiconductor device packaging, while passivation SiN cracks are usually observed at the bump edge on the bump of the array (BOA). In this paper, the simulation method was used to investigate the mechanism of SiN cracks and then, the bump process was optimized to improve the mechanical properties of the Cu pillar/Sn-Ag bump. It was found that higher reflow rounds could improve the shear strength due to the large degree of contact between the rugged scallop-like shape of the Cu6Sn5 and the Sn-Ag solder. The fracture plane cleaved between the Sn-Ag and Cu6Sn5 interface is consistent with the simulation results. The hardness of the Sn‒Ag solder is proportional to the reflow rounds, and the amount of Ag3Sn phase precipitation within the Sn-Ag solder contributes to the hardness value. In contrast, the disadvantage is that thermal residual stress could deteriorate the SiN crack, especially for a BOA structure The study concludes that an optimal bump process, including Sn-2%Ag solders at 260 °C for 30 s, could obtain a high shear strength and appropriate solder hardness without passivated SiN cracking.  相似文献   

18.
This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag3Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3.0Ag-0.5Cu >Sn-58Bi > Sn-9Zn. Planar Cu3Sn and scalloped Cu6Sn5 phases in Cu/solders and the scalloped Ag3Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu5Zn8 layer formed in the Sn-9Zn/Cu systems. AgZn3, Ag5Zn8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag3Sn phases dissolved into the solders and formed during solidification processes in the Ag3Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn3 and Ag5Zn8 phases are formed at the Sn-9Zn/Ag3Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn4 and Sn-rich regions between Ag5Zn8 and Ag3Sn.  相似文献   

19.
Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders   总被引:2,自引:0,他引:2  
Fatigue crack-growth behavior and mechanical properties of Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders have been investigated at room temperature (20°C). The tensile strength and hardness of the solders increased with increasing Bi content. However, the yield strengths of Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders were nearly similar, but the 3Bi solder exhibited the lowest ductility. Fatigue crack-growth behavior of the solders was dominantly cycle dependent in the range of stress ratios from 0.1–0.7 at a frequency of 10 Hz, except for the Sn-3Ag-0.5Cu solder tested at a stress ratio of 0.7. Mixed intergranular/transgranular crack propagation was observed for the Sn-3Ag-0.5Cu solder tested at the stress ratio of 0.7, indicating the importance of creep in crack growth. The Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders had higher resistance to time-dependent crack growth, resulting from the strengthening effect of the Bi constituent. It appears that the addition of Bi above a certain concentration is harmful to the mechanical properties of Sn-3Ag-0.5Cu.  相似文献   

20.
Intermetallic compound formation at the interface between Sn-3.0Ag-0.5Cu (SAC) solders and electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finish and the mechanical strength of the solder joints were investigated at various Pd thicknesses (0 μm to 0.5 μm). The solder joints were fabricated on the ENEPIG surface finish with SAC solder via reflow soldering under various conditions. The (Cu,Ni)6Sn5 phase formed at the SAC/ENEPIG interface after reflow in all samples. When samples were reflowed at 260°C for 5 s, only (Cu,Ni)6Sn5 was observed at the solder interfaces in samples with Pd thicknesses of 0.05 μm or less. However, the (Pd,Ni)Sn4 phase formed on (Cu,Ni)6Sn5 when the Pd thickness increased to 0.1 μm or greater. A thick and continuous (Pd,Ni)Sn4 layer formed over the (Cu,Ni)6Sn5 layer, especially when the Pd thickness was 0.3 μm or greater. High-speed ball shear test results showed that the interfacial strengths of the SAC/ENEPIG solder joints decreased under high strain rate due to weak interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 interfaces when the Pd thickness was greater than 0.3 μm. In the samples reflowed at 260°C for 20 s, only (Cu,Ni)6Sn5 formed at the solder interfaces and the (Pd,Ni)Sn4 phase was not observed in the solder interfaces, regardless of Pd thickness. The shear strength of the SAC/ENIG solder joints was the lowest of the joints, and the mechanical strength of the SAC/ENEPIG solder joints was enhanced as the Pd thickness increased to 0.1 μm and maintained a nearly constant value when the Pd thickness was greater than 0.1 μm. No adverse effect on the shear strength values was observed due to the interfacial fracture between (Pd,Ni)Sn4 and (Cu,Ni)6Sn5 since the (Pd,Ni)Sn4 phase was already separated from the (Cu,Ni)6Sn5 interface. These results indicate that the interfacial microstructures and mechanical strength of solder joints strongly depend on the Pd thickness and reflow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号