首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探究天津市大气中多环芳烃衍生物污染特征与来源,使用石英纤维滤膜(QFFs)和聚氨酯泡沫(PUFs)采集环境空气样品,并使用气相色谱-质谱法测定其浓度.结果表明,天津市大气中∑18NPAHs在秋季和冬季平均浓度分别为840, 894pg/m3,∑5OPAHs在秋季和冬季平均浓度分别为8.08, 9.36ng/m3,表现为冬季略大于秋季.大气中9N-ANT、2N-NAP、1N-NAP、2+3N-FLT、BZO和9-FO为主要的多环芳烃衍生物.PM2.5中多环芳烃衍生物的浓度冬季大于秋季,在气相中则为秋季大于冬季.从昼夜差异来看,PM2.5中,多环芳烃衍生物浓度的夜昼比在大部分采样天数都大于1,在秋季的气相和PM2.5中,昼间二次形成的NPAHs较冬季高.基于特征比值法进行来源初析,发现天津秋冬季大气PM2.5中NPAHs主要以一次排放为主,同时二次生成对NPAHs也有一定贡献,大气PM2.5中...  相似文献   

2.
本研究采集了长春市2017年秋季大气中的PM2.5样品共30个,采用气相色谱质谱仪(GC-MS)分析了样品中17种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的浓度和组成特征,运用比值法和主成分分析法确定PAHs的污染来源,并通过计算苯并(a)芘等效致癌浓度和终身致癌超额危险度进行健康风险评估.结果表明,长春市秋季PM2.5平均质量浓度为(50. 84±12. 23)μg·m-3,有机碳(OC)和元素碳(EC)含量分别为(17. 07±5. 64)μg·m-3和(1. 33±0. 75)μg·m-3,占PM2.5总量的37%; PAHs总浓度为(15. 69±5. 93) ng·m-3,以中高环数的PAHs为主,占总PAHs的84. 26%;长春市秋季大气中PAHs主要来源于机动车尾气排放(44. 48%)>煤燃烧(29. 16%)>生物质燃烧(26. 36%),本地交通(汽油车)...  相似文献   

3.
为探索吕梁地区PM2.5中多环芳烃的季节变化、健康风险和潜在来源,于2018年10月23日至2019年7月1日对离石区(市区)和孝义市(郊区)进行PM2.5样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了14种多环芳烃浓度.总多环芳烃的浓度年均值为95.50 ng·m-3,主要以5~6环为主(49.7%),3环占比较低(8.3%);吕梁市多环芳烃浓度呈现冬季>秋季>春季>夏季的季节性变化规律,市区浓度年均值(130.47 ng·m-3)高于郊区(84.4 ng·m-3);增量终身致癌风险和蒙特卡洛模拟结果均表明吕梁市多环芳烃毒性服从成人>青年>儿童的规律,除夏季外,离石区增量终身致癌风险值均在10-6~10-4之间,远高于孝义市,表明市区存在较高的多环芳烃潜在风险;通过采用特征比值法和正定矩阵因子分解模型表明,吕梁市多环芳烃主要来自于煤和生物质的燃烧(61.9%)和机动车尾气排放(38.1%),由后...  相似文献   

4.
为探究遵义市秋、冬季PM2.5中多环芳烃(PAHs)的污染特征及来源,于2020年10月~2021年1月采集了遵义市大连路、忠庄和新蒲3个采样点位PM2.5样品,利用GC-MS对样品中16种优控PAHs进行分析,利用特征比值法和多元统计法(PCA-MLR)解析其来源,并采用BaP毒性当量浓度和终生致癌风险模型(ILCR)探讨了PAHs对人体的健康风险。结果表明,研究期间遵义市PM2.5中16种PAHs浓度范围为9.68~108.80 ng/m3,平均值为(30.53±22.63)ng/m3,呈冬季高、秋季低的季节变化趋势。秋、冬季PM2.5中PAHs环数分布特征一致,高环(5~6环)>中环(4环)>低环(2~3环),以中环、高环PAHs为主。PCA-MLR分析表明PAHs主要来自燃煤和生物质燃烧混合源、机动车尾气,其中,燃煤和生物质燃烧对颗粒物中PAHs的来源贡献最大,秋季为50.6%,冬季为54.8%。遵义市冬季PAHs总毒性当量浓度(TEQ...  相似文献   

5.
为研究承德市PM2.5中多环芳烃(PAHs)的季度变化特征和污染来源,于2019年的1、 4、 7和10月采集PM2.5样品,采用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs的浓度,并利用时序变动、特征比值和正定矩阵因子模型(PMF)的方法,分析了各季节PAHs的浓度变动、组分特征和潜在污染源.此外,为评价PAHs对健康风险的影响,采用BaP毒性当量法(BaPTeq)及增量终生致癌风险(ILCR)模型,并结合PAHs数据和PMF结果进行分析.结果表明,采样期间承德市PM2.5中■的变化范围为2.7~246.4 ng·m-3,呈现(136.8±52.1)ng·m-3(冬季)>(70.3±36.7)ng·m-3(秋季)>(24.7±17.4)ng·m-3(春季)>(13.7±9.4)ng·m-3(夏季)的显著季节特征.不同环数PAHs的浓度占总浓度的占比中,5~6环的...  相似文献   

6.
以2013—2014年期间太原城区大气细颗粒物(PM_(2.5))为研究对象,定量分析了其中多环芳烃和硝基多环芳烃的浓度.结果显示,太原城区PM_(2.5)中16种多环芳烃和12种硝基多环芳烃的浓度分别为13.8~547和0.70~4.33 ng·m~(-3),硝基多环芳烃浓度低于多环芳烃浓度1~2个数量级.太原城区PM_(2.5)中多环芳烃最高值出现在冬季,最低值出现在夏季,冬季污染物浓度平均值高于夏季20倍,主要是由于北方采暖期间取暖用煤量的增加使得多环芳烃排放量大幅提高;与之不同的是,硝基多环芳烃浓度季节变化并不显著,冬季浓度均值与夏季差异小于5倍(除9-硝基蒽),反映出硝基多环芳烃生成主要与机动车尾气排放有关,其排放不受季节控制,这与实际情况是吻合的.此外,基于因子分析和化合物比值结果发现,太原城区大气PM_(2.5)中9-硝基蒽有来自周边地区木材燃烧的贡献.健康风险评价结果表明,必须对多环芳烃排放进行有效控制来降低人群在冬季大气中的暴露风险;对于硝基多环芳烃,其健康风险更要引起足够的重视.  相似文献   

7.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

8.
为了解南昌市道路扬尘和土壤风沙尘PM2.5中多环芳烃(PAHs)的来源和健康风险,利用颗粒物再悬浮系统采集PM2.5样品,测定了PM2.5中16种优先控制的多环芳烃的含量.结果表明,南昌市道路扬尘PM2.5中ΣPAHs含量范围为48.85~166.16μg·kg-1,平均值为(114.22±39.95)μg·kg-1,土壤风沙尘PM2.5中ΣPAHs含量范围为31.05~62.92μg·kg-1,平均值为(40.79±9.39)μg·kg-1.道路尘和土壤风沙尘PM2.5中的PAHs都是以4~5环组分为主.主成分分析/多元线性回归分析结果表明,南昌市道路扬尘PM2.5中PAHs的来源包括机动车的排放和燃煤源与石油泄漏,贡献率分别为51.7%和48.3%,总估计值与实际值的线性拟合有很好的一致性.对于儿童和成年男性,不同暴露途径的PAHs致癌风险值从大到小依次是皮肤接触 > 摄食 > 呼吸吸入,而成年女性则表现为摄食 > 皮肤接触 > 呼吸吸入.各暴露途径中,PAHs对成人的致癌风险均高于儿童.所有人群中,PAHs的总致癌风险值均低于美国EPA推荐的致癌风险阈值10-6,没有致癌风险.  相似文献   

9.
为了研究浙北地区PM2.5中多环芳烃(PAHs)的季节性变化和它们的来源,于2014年11月~2015年11月收集了杭州和宁波2个城市中4个采样点的PM2.5样品,利用气-质联用仪测定了17种PAHs浓度.结果表明,∑PAHs年平均浓度范围为24.1~51.9ng/m3,平均值为(35.5 ±12.3) ng/m3.2~3环PAHs在PM2.5中的浓度较低(<1ng/m3),而4~6环PAHs占总PAHs的77.0%.∑PAHs的浓度与PM2.5呈相似的季节性变化特征,冬季浓度最高而夏季最低.惹烯作为软木燃烧的示踪物,冬季的浓度是夏季的4倍,表明在冬季软木燃烧的排放和对PM2.5的贡献都有所增加.除了夏季的2个城区站点,其它季节和站点∑PAHs浓度和PM2.5呈现一定的正相关性.特征PAHs比值显示,浙北地区气溶胶相关的多环芳烃主要来自燃烧和热解排放,如生物质燃烧和煤燃烧,而交通排放和石油挥发源的影响不大.  相似文献   

10.
为研究聊城市冬季PM_(2. 5)中多环芳烃(PAHs)的浓度水平、来源及健康效应,于2017年1~2月对聊城市PM_(2. 5)中的14种PAHs进行分析,利用特征比值法和PCA-MLR模型对其来源及贡献率进行解析,并利用Ba P当量浓度(Ba Peq)和呼吸途径暴露PAHs引发癌症的风险(ILCR)模型进行健康风险评估.结果表明,聊城市冬季PM_(2. 5)中PAHs的平均质量浓度为(64. 89±48. 23) ng·m~(-3),其中Fla、Pyr和Chry的浓度最高,占比分别为15. 5%、12. 8%和12. 7%,且4环PAHs总质量浓度占比最高,春节前与烟火Ⅱ期比其他时期污染较重. PCA-MLR模型分析结果表明,聊城市冬季PM_(2. 5)中PAHs来源主要包括煤炭燃烧、生物质燃烧和机动车尾气.聊城市冬季TEQ平均值为(6. 37±4. 92) ng·m~(-3),ILCR模型评估结果表明,成人的ILCR值高于儿童,二者的ILCR值均处于风险阈值内(10-6~10-4),表明聊城市冬季PM_(2. 5)具有潜在致癌风险.  相似文献   

11.
本研究于2018年10月4日至2019年1月30日在洛阳市高新和林校2个采样点位同步连续采集秋冬季PM2.5样品,使用气相色谱-质谱联用仪(GC-MS)对PM2.5中优先控制的16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)进行了分析测定.对优良天和污染天PM2.5中16种PAHs的质量浓度和组成分布特征进行了研究,利用特征比值法和主成分分析法对其主要来源进行了定性解析,并使用苯并[a]芘(BaP)毒性当量法和增量终生致癌风险模型评估了对人体的健康风险.结果表明在采样期内,高新和林校两个采样点的PM2.5中16种PAHs质量浓度变化范围分别为24.33~90.26 ng·m-3和23.81~76.99 ng·m-3.随着PM2.5污染程度的加重,PAHs浓度明显升高(污染天为优良天的1.3倍),不同环数PAHs贡献顺序均为:4环(43%~48%) > 5~6环(32%~35%) > 2~3环(20%~22%).大气中PAHs主要来自于燃烧源,包括燃煤、生物质燃烧以及机动车排放等,其中燃煤对PAHs污染贡献最大(优良天:49.28%~56.38%,污染天:49.44%~60.60%).BaP毒性当量浓度表明,污染天存在更高的人体健康风险;增量终生致癌风险结果表明,污染天致癌风险高于优良天,成人呼吸暴露风险高于儿童,在研究区域内不同污染水平下健康风险属于可接受水平(<1×10-6).  相似文献   

12.
陈璋琪 《地球与环境》2019,47(3):275-282
为了解泉州市大气PM_(2.5)中PAHs的污染特征,明确关键污染源,于2016年2月~10月采集了清源山、涂山街、万安和东海四个站点的PM_(2.5)样品,采用前进样口直接热解析气相色谱-质谱联用仪(TD-GC/MS)定量分析了19种多环芳烃(PAHs)的浓度水平,并对其健康风险进行评价。结果表明,采样期间泉州市大气PM_(2.5)中∑PAHs质量浓度为1. 98±0. 75 ng/m~3,显著低于国内大多数城市;呈现冬季春季夏季秋季的季节变化特点,以及涂山街万安东海清源山的空间分布特征。其中,5环PAHs占比最大,为30%~38%,其次为3环,4环和6环,占比分别为18%~27%、22%~25%、和13%~19%。特征比值法分析发现,夏、秋季PAHs受生物质燃烧或煤燃烧的影响大于冬、春季;冬、春季化石燃料燃烧(如机动车排放)的影响较大。大气PM_(2.5)中PAHs对儿童和成人的超额终生致癌风险分别为0. 7×10~(-7)和1. 4×10~(-7),不具有致癌风险。  相似文献   

13.
石晓兰  宗政  彭辉  张欣捷  孙溶  王晓平  田崇国 《环境科学》2023,44(10):5335-5343
为探究近10年华北背景大气PM2.5中重金属的变化特征,分别于2011年12月至2013年1月(Ⅰ期)和2019年9月至2021年11月(Ⅱ期),在位于渤海中部的砣矶岛国家大气背景监测站各采集71个和160个PM2.5样品,利用电感耦合等离子体质谱仪(ICP-MS)测定样品中重金属浓度,对比Ⅰ期与Ⅱ期重金属浓度、来源及健康风险.结果表明,Ⅱ期砣矶岛ρ(PM2.5)均值为(54.06±39.71)μg ·m-3,比Ⅰ期浓度低3.53μg ·m-3.Ⅱ期PM2.5ρ(Zn)、ρ(Mn)、ρ(As)、ρ(Pb)和ρ(V)比Ⅰ期分别降低了54.53、172.63、0.8、79.06和3.81 ng ·m-3,而ρ(Cr)、ρ(Cu)、ρ(Cd)和ρ(Ni)分别升高了2.01、5.42、3.03和3.55 ng ·m-3.PMF结果表明,Ⅱ期污染源贡献率大小为:工业排放源(32.32%)>燃煤源(27.47%)>机动车排放(23.70%)>船舶排放(9.69%)>扬尘源(6.83%),与Ⅰ期相比,扬尘源和船舶排放源对砣矶岛PM2.5中金属的贡献率分别降低20.73%和8.83%,燃煤源和工业排放的贡献率分别增加2.50%和13.52%.Ⅱ期重金属总致癌风险增加,主要以Cr和Cd的贡献为主,总非致癌风险降低,以Mn贡献为主.因此,在大气污染治理进程中要进一步加强对Cr、Cd和Mn等重金属的污染源的管控.  相似文献   

14.
采集了厦门市冬春季(2008-12-04~2009-03-20)湖里工业区和大嶝岛旅游区大气PM10样品,用GC-MS定量了PM10负载的19种多环芳烃(PAHs),并结合采样期间气象资料对灰霾期和非灰霾期多环芳烃的差异特征进行对比分析.结果表明,冬春季采样期内,厦门市大气PM10中PAHs的浓度变化范围为12.93~79.27 ng.m-3,平均42.28 ng.m-3,比2004年冬季增长近3倍.灰霾期间PM10中PAHs总的质量浓度明显高于非灰霾期,并且灰霾期间低分子量组分菲、荧蒽和芘的质量分数显著下降,高分子量组分苯并[b]荧蒽、苯并[k]荧、苯并[a]芘、苝、茚并[1,2,3-cd]芘、苯并[ghi]苝和晕苯的质量分数相对升高.采用特征化合物比值、主成分分析与多元线性回归对来源与贡献率进行了分析和估算.灰霾期间识别出3类污染源:机动车尾气排放+天然气燃烧、煤燃烧和焦炉排放,其贡献率分别为62.7%、28.1%和9.2%;非灰霾期间同样识别出这3类污染源,其贡献率分别为48.6%、36.9%和14.5%.表明厦门市冬春季灰霾期间PM10中PAHs受本地源排放影响相对较多,非灰霾期间受北方燃煤长距离传输影响更显著.  相似文献   

15.
李雪梅  牟玲  田妹  郑利荣  李杨勇 《环境科学》2020,41(11):4825-4831
为研究山西大学城PM2.5中元素的污染特征及来源,采用能量色散X射线荧光光谱仪(energy dispersive X-ray fluorescence spectrometer, ED-XRF)对研究区域2017年PM2.5样品中21种元素进行分析,并对Mn、Zn、Cu、Sb、Pb、Cr、Co和Ni等重金属进行健康风险评估,同时采用主成分分析方法(principal component analysis, PCA)和正定矩阵因子分解法(positive matrix factorization, PMF)定量解析元素的主要来源.结果表明, 2017年山西大学城PM2.5中21种元素中Ca质量浓度最高,其次是Si、Fe、Al、S、K和Cl,这7种元素占元素总质量浓度的95.71%.其中,Cr元素浓度超过我国环境空气质量标准年平均浓度限值的104倍.春季、夏季和冬季PM2.5中Ca质量浓度最高,而秋季S元素质量浓度最高.对3类人群具有非致癌风险的元素均为Mn,且风险大小依次为儿童>成年男性>...  相似文献   

16.
2014年3月、4月和7月分别采集了泉州市5个采样点共49个PM_(2.5)样品,采用电感耦合等离子体质谱(ICP-MS)测定样品镧系元素(Loid)及其他微量金属元素浓度水平.分析了PM_(2.5)镧系元素组成特征和配分模式,利用La-Ce-V三元图和化学质量平衡(CMB)受体模型解析了泉州市大气PM_(2.5)污染来源.结果表明:(1)泉州市大气PM_(2.5)总镧系元素(Σ Loid)浓度为2.490~5.708 ng·m~(-3)(含量65.682~126.529μg·g~(-1)),轻重镧系元素比值(L/H)为12.086~14.319;(2)PM_(2.5)镧系元素配分模式与福建土壤相似,PM_(2.5)中Ce元素表现为正异常,而Eu元素表现为负异常;(3)城市扬尘、燃煤尘、汽车尾气尘和垃圾焚烧飞灰是泉州市大气PM_(2.5)的主要来源,贡献率分别为18.9%、10.9%、30.6%和30.2%.  相似文献   

17.
兰州城区大气PM2.5污染特征及来源解析   总被引:2,自引:5,他引:2  
王新  聂燕  陈红  王博  黄韬  夏敦胜 《环境科学》2016,37(5):1619-1628
为探究兰州城区PM_(2.5)的污染特征及其来源,分别在兰州市城关区和西固区设置PM_(2.5)采样点,于2013年10月(非采暖期)和12月(采暖期)采集样品并进行分析,得到了PM_(2.5)及其16种化学组成的质量浓度.结果表明,兰州城区PM_(2.5)污染水平较高,平均质量浓度为129μg·m~(-3).样品无机元素平均质量浓度为:SCaFeAlMgPbZnMnTiCu,其中S、Ca、Fe、Al的质量浓度在1μg·m~(-3)以上,是主要元素组分;样品各无机元素质量浓度表现为采暖期高于非采暖期,城关区高于西固区.样品水溶性离子平均质量浓度为:SO~(2-)_4NO~-_3NH~+_4Cl~-K~+Na~+,其中SO~(2-)_4、NO~-_3、NH~+_4的质量浓度在10μg·m~(-3)以上,是主要离子组分;样品各水溶性离子质量浓度表现为采暖期高于非采暖期,西固区高于城关区.富集因子(EF)分析结果表明,元素Al、Ca、Mg、Ti的EF值均小于1以自然来源为主;元素Cu、Pb、S、Zn的EF值显著大于10,表明这4种元素在PM_(2.5)中高度富集,且主要源于人为活动造成的污染.主成分分析结果表明,交通排放源、生物质燃烧源、土壤源和二次粒子对兰州城区大气PM_(2.5)贡献显著.  相似文献   

18.
于2020年3月~2021年2月对深圳市道路环境空气中PM2.5载带的15种金属元素的质量浓度进行时间分辨率为1h的全年在线观测.结果显示,深圳市道路环境空气中PM2.5载带金属元素的总平均浓度为(1062.3±434.6) ng/m3,其中Fe、Al、K、Ca和Zn为主要贡献元素,在金属元素中总贡献达到95.5%.Fe的浓度较高,受到与道路扬尘和机动车排放的强烈影响.金属浓度存在着显著的季节性差异,冬季浓度最高(1709.3ng/m3),夏季最低(644.1ng/m3).Mn、Fe、Cr、Zn和Ca元素呈现明显的双峰日变化分布,与机动车流量高峰一致.昼夜浓度分布结果显示,夜间船舶排放V和Ni的浓度高值得关注,而Mn、Zn和Ca的浓度白天较夜晚高,与白天机动车流量较高有关.高污染日总金属日间浓度和夜间浓度均为全年日间和夜间平均浓度的1.9倍.成年人与儿童暴露于深圳市道路环境空气的非致癌风险均低于阈值1,但是总致癌风险(6.5×10-6)超过阈值10  相似文献   

19.
奥运期间北京交通环境细颗粒物中多环芳烃特征研究   总被引:7,自引:1,他引:7  
采用GC/MS测定了奥运空气质量保障措施实施期间(2008年8月)及非奥运时段(2008年6月、2009年8月)北京市北四环道路边PM2.5中12种优控PAHs含量,并应用特征化合物比值法对PAHs来源进行了识别.研究表明,奥运空气质量保障措施实施期问PAHs总浓度平均为4.77 ng·m-3,较非奥运时段下降了59%...  相似文献   

20.
为探讨内陆山区城市湖北省十堰市冬季PM2.5污染特征及来源构成,于2016年1月12日—2月4日在4个采样点位同步采集PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳的质量浓度.并采集了十堰市主城区城市扬尘、裸露山体尘、建筑水泥尘、燃煤源、机动车尾气、工业源及餐饮油烟源等7类污染源,初步建立十堰市本地的污染源成分谱库,利用统计学方法研究冬季PM2.5的污染特征,并采用CMB受体模型及“二重源解析技术”分析其来源构成.结果表明:冬季采样期间,十堰市ρ(PM2.5)平均值达到110.65 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准24 h浓度限值,并且随空气RH(相对湿度)增加污染加重.城区3个采样点PM2.5化学组成及特征的空间差异不明显.PM2.5中ρ(TC)最高,其次是ρ(NO3-)和ρ(SO42-),与二次反应、机动车尾气、煤燃烧等密切相关.ρ(NO3-)/ρ(SO42-)为1.22,说明机动车尾气的影响较大.二次粒子、燃煤源和机动车尾气是十堰市城区冬季大气PM2.5的主要来源,贡献率分别为51.2%、10.9%和10.1%.研究显示,十堰市城区冬季ρ(PM2.5)超过GB 3095—2012二级标准,PM2.5的污染控制应以二次粒子、燃煤和机动车为主,采取多源控制原则.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号