首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用H2O2对蒙脱石进行活化,获得了活化蒙脱石吸附材料(AX-MMT),采用X射线衍射(XRD)、傅里叶红外谱图(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、比表面分析(BET)、表面Zeta电位分析等手段对活化样品进行了表征;采用静态批量实验法,考察了H2O2浓度、pH值、接触时间和共存阴阳离子对U(Ⅵ)在AX-MMT上吸附率的影响。结果表明:活化保留了蒙脱石基础结构,其阳离子交换容量(CEC)有所减少,但层间距、比表面积、孔隙体积、表面酸位点和表面Zeta电位均有明显提升,对溶液中U(Ⅵ)的吸附性能显著增强;在最佳活性和吸附条件下(H2O2质量分数、pH值和接触时间分别为10%、6和24 h),蒙脱石对U(Ⅵ)的吸附性能提升了8.5倍,吸附行为符合准二级吸附动力学模型;在共存阴阳离子的干扰下,H2O2活化蒙脱石能对U(Ⅵ)展现良好的吸附性能。  相似文献   

2.
为设计一种对U(Ⅵ)具有较高吸附容量和较高选择性的吸附材料,采用石墨相氮化碳(g-C_(3)N_(4))与磷酸二氢铵作为原料,通过热共聚法制备P-C_(3)N_(4),再利用磷酸氢二钠与硝酸银通过原位共沉淀法制备Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料。吸附实验结果表明,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料在室温下对U(Ⅵ)的吸附容量达到524.6 mg/g;在溶液中同时存在Na^(+)、K^(+)、Mg^(2+)、Ca^(2+)、Sr^(2+)、Zn^(2+)、Ni^(2+)和Co^(2+)等竞争离子时,对U(Ⅵ)的吸附分配系数达到6.13×10^(3)mL/g。XPS分析结果表明,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料中的含N和含P官能团可能参与U(Ⅵ)吸附过程。因此,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料是一种对U(Ⅵ)具有较高吸附容量和较高选择性的吸附材料。  相似文献   

3.
利用H_2O_2对活性炭进行活化,得到了良好的吸附材料(15%-AC),用傅立叶红外(Fourier Transform Infrared spectroscopy,FT-IR)、热重分析(Themiogravimetric Analysis,TGA)、扫描电子显微镜(Scanning Electron Microscope,SEM)和Brunauer-Emmett-Teller (BET)孔径分析等方法测定了活化前后样品。结果表明:经过H_2O_2活化后的活性炭,表面氧化基团增加,形成更多吸附位点,比表面积小幅度减少,但介孔量增加,孔隙率上升。采用静态吸附实验研究了接触时间、pH、固液比、初始浓度、温度、共存阴阳离子等因素对吸附的影响。在最佳条件下(接触时间、pH、固液比、初始浓度、温度分别为90 min、5、8 g·L~(-1)、80 mg·L~(-1)、35℃),吸附性能增加了68%;准二级动力学模型和Langmuir等温吸附模型对吸附行为的拟合效果好,表现为表面均匀且为多基元的吸附行为;15%-AC在共存离子和循环吸附的影响下仍具有良好的吸附性能。实验证明:H_2O_2的活化过程可以有效地提高活性炭对U(Ⅵ)的吸附性能。  相似文献   

4.
以阿拉善粘土岩胶体为吸附介质,采用静态吸附的方法,探讨了不同铀初始浓度、pH、离子种类对粘土岩胶体吸附U(Ⅵ)行为的影响。实验结果表明:U(Ⅵ)的初始浓度为3μg·mL~(-1)时,达到最佳吸附效果;吸附分配系数随pH的增加呈现先增加后降低的趋势,且在pH=8时达到最佳吸附效果;阴、阳离子对U(Ⅵ)在粘土岩胶体中的吸附有一定的抑制作用,其中Ca~(2+)、HCO_3~-、CO_3~(2-)抑制作用较强。U(Ⅵ)在粘土岩胶体中的吸附等温线符合Freundlich等温方程;吸附前后红外光谱表明,与吸附相关的主要基团为羟基。  相似文献   

5.
6.
采用高温熔盐电解法合成了MoS2,为了提高MoS2对铀的吸附性能,以MoS2为基底复合Mn2O3。MoS2的片层结构有效地分散了Mn2O3的团聚,同时引进了亲铀氧基团。采用电子扫描显微镜及能谱(SEM & EDS)、X射线衍射仪(XRD)、Zeta电位仪等对Mn2O3@MoS2复合材料进行了表征,表征结果表明,高温结晶合成的Mn2O3@MoS2复合材料具有完整的微观形貌和稳定的晶体结构。通过静态吸附批实验探究了在不同变量下Mn2O3、MoS2和Mn2O3@MoS2三个材料对溶液中铀的吸附效果,结果表明,Mn2O3@MoS2的吸附性能优于Mn2O3和MoS2,在pH=5.5时,吸附平衡时间为90 min,吸附动力学遵循准二级动力学模型,吸附等温线符合Langmuir模型。Mn2O3@MoS2的单层饱和吸附容量为117.5 mg/g,在293.15~318.15 K的温度梯度中,升温有利于吸附进行。  相似文献   

7.
U(Ⅵ)在Na-凹凸棒石黏土上的吸附   总被引:1,自引:0,他引:1  
采用批式法研究了U(Ⅵ)在Na-凹凸棒石黏土上的吸附行为,结果表明,U(Ⅵ)在Na-凹凸棒石黏土上的吸附动力学速度快,且符合假二级动力学方程。探讨了吸附接触时间、离子强度、pH值、富里酸(FA)及温度等因素对吸附的影响。结果发现:在pH<5.5时,随NaCl浓度的增大,U(Ⅵ)在Na-凹凸棒石黏土上的吸附率减小,pH>8.0时,随NaCl浓度的增大,U(Ⅵ)的吸附率反而增大;在pH<6.0时,吸附率随pH值增大而增大,pH>8.0时,吸附率随pH值的增大而减小;在高pH值下,U(Ⅵ)在Na-凹凸棒石黏土上的吸附机理可能主要是表面配合作用,而在低pH值下,其吸附机理可能主要是离子交换作用;高温有利于U(Ⅵ)在Na-凹凸棒石黏土上的吸附,且该吸附是吸热的、自发的过程;FA对吸附有明显的促进作用。  相似文献   

8.
采用溶胶-凝胶法合成二氧化钛(TiO2),并将苯胺聚合在TiO2表面制备了聚苯胺(PANI)/TiO2复合材料(PANI/TiO2)。使用FT-IR、TGA和XPS表征了制备的TiO2、PANI和PANI/TiO2的表面功能基团、热稳定性和表面元素组成。研究了溶液pH值、吸附时间、U(Ⅵ)浓度和温度等因素对TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的影响,探讨了3种材料对U(Ⅵ)的吸附动力学、等温线和热力学性质。FT-IR、TGA和XPS表征结果表明,成功制备了PANI/TiO2复合材料。TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的最佳pH值分别为5.0、4.5和5.0;吸附过程均符合Langmuir吸附等温模型和准二级吸附方程,TiO2、PANI和PANI/TiO2的单层饱和吸附量分别为11.49、22.41、43.29 mg/g;3种吸附剂对U(Ⅵ)的吸附过程均为自发的吸热过程。同时,PANI/TiO2具有较好的循环使用性能,第5次使用时,吸附量仅降低了15.4%。  相似文献   

9.
H2O2活化蒙脱石对溶液中U(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
利用H2O2对蒙脱石进行活化,获得了活化蒙脱石吸附材料(AX-MMT),采用X射线衍射(XRD)、傅里叶红外谱图(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、比表面分析(BET)、表面Zeta电位分析等手段对活化样品进行了表征;采用静态批量实验法,考察了H2O2浓度、pH值、接触时间和共存阴阳离子对U(Ⅵ)在AX-MMT上吸附率的影响。结果表明:活化保留了蒙脱石基础结构,其阳离子交换容量(CEC)有所减少,但层间距、比表面积、孔隙体积、表面酸位点和表面Zeta电位均有明显提升,对溶液中U(Ⅵ)的吸附性能显著增强;在最佳活性和吸附条件下(H2O2质量分数、pH值和接触时间分别为10%、6和24 h),蒙脱石对U(Ⅵ)的吸附性能提升了8.5倍,吸附行为符合准二级吸附动力学模型;在共存阴阳离子的干扰下,H2O2活化蒙脱石能对U(Ⅵ)展现良好的吸附性能。  相似文献   

10.
稻壳对铀吸附性能的研究   总被引:4,自引:3,他引:4  
采用稻壳粉末作为吸附剂,进行了模拟含铀废水中U(Ⅵ)吸附实验的研究,考察了稻壳的粒度、溶液的pH、初始浓度、吸附时间、温度及稻壳用量等因素对铀吸附去除率的影响,分析了吸附过程的反应动力学和等温吸附规律,并用扫描电镜、红外光谱及能谱图分析了吸附机理。结果表明:稻壳粉末对铀的吸附平衡时间为4h,且吸附剂粒度越小、温度越高、投加量越大、溶液pH=5左右时越有利于铀的去除;稻壳对U(Ⅵ)的吸附动力学行为可用准二级吸附速率方程来描述,相关系数R2=1;吸附过程符合Freundlich等温吸附方程,相关系数R2=0.9954;稻壳吸附U(Ⅵ)使表面形态发生变化,与U(Ⅵ)相互作用的基团主要是羟基、羧基、P—O和Si—O。综合看来,稻壳对U(Ⅵ)的吸附既存在物理吸附,又存在化学吸附,为混合吸附过程。  相似文献   

11.
为了在粘土矿物胶体处理系统中核素迁移机理的研究工作提供基础性数据和技术依据,采用静态吸附法研究了铝皂石胶体在不同接触时间、p H、离子种类、腐殖酸用量和温度条件下对U(Ⅵ)吸附效果的影响,应用激光粒度仪、Zeta电位仪、傅里叶变换红外光谱仪(Fourier Transform Infrared,FT-IR)、X射线荧光光谱仪(X-ray Fluorescence Spectrometer,XRF)和扫描电子显微镜(Scanning Electron Microscope,SEM)对铝皂石胶体的结构和吸附机理进行探究。实验结果表明:升温有利于反应的进行,溶液中阴阳离子对吸附效果的影响很大;当吸附平衡时间为20 min、pH等于6、腐殖酸投加量为2 mg时,铝皂石胶体对U(Ⅵ)吸附效果最好。实验所制备的铝皂石胶体具有良好的吸附性能,有望成为一种能够有效处理含铀废水的吸附材料。  相似文献   

12.
采用静态法研究了某铀矿山附近土壤中的红壤胶体在不同pH值、离子强度、吸附平衡时间、铀溶液初始浓度、胶体用量、胶体粒径和有机质条件下对U(Ⅵ)的吸附影响,从热力学和动力学方面对吸附过程进行了分析,并通过元素分析、红外光谱(FT-IR)和扫描电镜(SEM)对吸附机理进行了初步探讨。实验结果表明:离子强度越小,胶体粒径越小,胶体对U(Ⅵ)的吸附量越大;单位质量红壤胶体对铀的吸附量随铀初始质量浓度的增大而增大,随红壤胶体用量的增大而减少;在25 ℃、pH值为3.5、离子强度为0.001 mol/L时,粒径小于1 μm的红壤胶体的饱和吸附量qmax为76.76 μg/mg。红壤胶体吸附铀酰离子前后的红外光谱表明,与吸附相关的主要基团为羟基、羰基、Si-O、Si-O-Fe等。红壤胶体对铀的吸附遵循Langmuir吸附等温线,符合准二级吸附动力学方程。  相似文献   

13.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

14.
木屑季铵盐型螯合吸附剂对U(Ⅵ)的吸附性能研究   总被引:1,自引:1,他引:0  
通过对木屑进行化学改性,制备了木屑季铵盐型螯合吸附剂(MS),用于强化木屑对含铀废水中U(Ⅵ)的吸附性能。对所得MS的晶体结构和表面形貌进行了分析,探索了MS投加量、反应时间、溶液pH值和反应温度对吸附性能的影响,并在此基础上分析吸附机理。结果表明:MS投加量为0.1 g/L、吸附时间为2 h、pH=4.5、吸附温度为30 ℃时,铀去除率达99.7%,较未改性木屑对铀的吸附率提高了26.9%。以0.1 mol/L的HCl溶液作为脱附剂,初次解吸率达99.9%,表明MS具有较好的重复利用性。  相似文献   

15.
以聚乙烯吡咯烷酮(polyvinyl pyrrolidone, PVP)包覆纳米Fe3O4(以Fe3O4@PVP表示,下同)作为U(Ⅵ)吸附剂,开展了pH值、初始铀浓度、吸附温度、离子强度、吸附时间等因素对吸附U(Ⅵ)的影响研究,同时进行了吸附等温线、吸附动力学、吸附热力学与循环利用研究。结果表明,在pH=6.00、温度为20~40℃时,Fe3O4@PVP吸附U(Ⅵ)达到平衡的时间为5~60 min,单次铀吸附率均大于75%。该吸附过程符合准二级吸附动力学模型,温度为20~40℃时,准二级吸附速率常数为0.000 646~0.012 500 g/(mg·min);该过程符合Redlich-Peterson与Langmuir等温线模型,根据Langmuir等温线预估20~40℃时Fe3O4@PVP吸附U(Ⅵ)的饱和吸附容量为185.8~291.0 mg/g。此吸附过程是一个吸热过程(标准吸附焓变ΔH?  相似文献   

16.
以聚乙烯吡咯烷酮(polyvinyl pyrrolidone, PVP)包覆纳米Fe3O4(以Fe3O4@PVP表示,下同)作为U(Ⅵ)吸附剂,开展了pH值、初始铀浓度、吸附温度、离子强度、吸附时间等因素对吸附U(Ⅵ)的影响研究,同时进行了吸附等温线、吸附动力学、吸附热力学与循环利用研究。结果表明,在pH=6.00、温度为20~40℃时,Fe3O4@PVP吸附U(Ⅵ)达到平衡的时间为5~60 min,单次铀吸附率均大于75%。该吸附过程符合准二级吸附动力学模型,温度为20~40℃时,准二级吸附速率常数为0.000 646~0.012 500 g/(mg·min);该过程符合Redlich-Peterson与Langmuir等温线模型,根据Langmuir等温线预估20~40℃时Fe3O4@PVP吸附U(Ⅵ)的饱和吸附容量为185.8~291.0 mg/g。此吸附过程是一个吸热过程(标准吸附焓变ΔH?  相似文献   

17.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu2+对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

18.
合成了一种新型的、具有高吸附量和机械强度且易于分离的双偕胺肟基聚合物/Fe3O4@SiO2吸附剂,通过静态吸附实验,研究了pH值、固液比、吸附时间、溶液初始浓度等因素对吸附剂吸附铀的影响,并探讨了吸附过程的热力学和动力学。结果表明,吸附剂对铀的吸附量随吸附剂用量、吸附时间及铀酰离子初始浓度的增加而增加,但当这些因素达到一定值时,吸附达到平衡。最佳吸附条件为:pH=5、固液比为0.6 g/L、吸附时间为90 min、铀溶液初始浓度为100 mg/L,在此条件下其饱和吸附量可达到160 mg/g。吸附剂对铀的吸附遵循Langmuir等温吸附线,符合准二级动力学方程。  相似文献   

19.
通过水热法制备了磁性MOFs材料Fe3O4@SiO2@UiO-66-SO3H,并利用红外光谱仪(FT-IR)、X射线衍射仪(XRD)、比表面积测试(BET)、振动样品磁强计(VSM)、X射线光电子能谱仪(XPS)等对材料结构、形貌和性能进行表征。考察了溶液pH值、时间、温度、Co(Ⅱ)初始浓度对Fe3O4@SiO2@UiO-66-SO3H吸附性能的影响。结果表明,在pH=8.3、温度为298 K下,Fe3O4@SiO2@UiO-66-SO3H对Co(Ⅱ)的理论最大吸附量为106 mg/g;吸附过程符合准二级动力学模型和Langmuir等温模型,吸附是一个自发的吸热过程。Fe3O4@SiO2@UiO-66-SO3H在外加磁场下易从水溶液中分离,5次循环后仍具有较强的吸附性能。  相似文献   

20.
氧化石墨烯由于具有高比表面积和大量含氧功能基团,在放射性核素的高效富集方面引起广泛的关注。利用自制的氧化石墨烯作为吸附剂,研究了不同实验条件下对放射性废水中U(Ⅵ)的吸附行为,研究了pH、离子强度、温度和氧化石墨烯浓度对U(Ⅵ)吸附的影响。结果表明,氧化石墨烯对U(Ⅵ)的吸附主要是形成内层表面络合物,具有很强的去除能力,是目前所有材料中对U(Ⅵ)吸附能力最强的材料之一。吸附后的石墨烯经强酸处理后可以实现循环利用,而且吸附能力没有明显降低,但是弱酸处理不能使吸附的铀从石墨烯表面解吸。随着未来技术的发展,氧化石墨烯能够低成本大量制备后,在放射性废水处理中将具有重要的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号