首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
详细研究了隧道拱脚处裂纹对围岩稳定性及破坏模式的影响,裂纹分两组进行设置:一是裂纹以拱脚交界点为圆心逆时针方向分布在A(0°<α≤90°),B(90°<α≤180°)及C(180°<α≤270°)区域,且与隧道底板面成夹角α;二是裂纹倾角α为127°,与隧道跨度成不同裂纹长度比β。采用物理模型试验和数值模拟对比分析拱脚裂纹的不利因素,随后选择砂岩材料制作隧道模型试件进行室内试验,得到裂纹因素对围岩强度的影响。数值模拟采用有限元程序分别计算裂纹尖端的应力强度因子与围岩损伤演化云图。通过两者对比论证可以得到如下结论:①裂纹在隧道拱脚位置处成不同倾角α时,裂纹分布区域的危害程度可依次排列为B>C>A;②裂纹倾角α在120°~135°时,裂纹对隧道整体的稳定性影响最大;③在双轴压缩载荷作用下,围岩的破坏行为主要是裂纹尖端与边墙的拉剪破坏及局部的拉伸破坏;④裂纹长度比β对围岩整体稳定性影响表征为线性反比例函数关系。  相似文献   

2.
周磊  朱哲明  刘邦 《岩土工程学报》2016,38(7):1230-1237
在爆炸载荷作用下,隧道周边会产生大量的径向裂隙,研究在双轴压缩荷载作用下不同位置处径向单裂纹直墙拱形隧道的破坏规律,分两种情况进行研究,一种是裂纹在隧道拱肩或拱顶部位,以拱顶半圆圆心为基点的径向裂纹;另一种是裂纹在隧道底板或边墙部位,其裂纹面与隧道底板、边墙成135°夹角。采用模型试验和数值模拟方法进行研究,模型试验采用水泥砂浆制作隧道模型,数值模拟计算隧道模型裂纹尖端应力强度因子和应力云图,模拟结果与试验结果对比较吻合。结果表明:1裂隙会降低隧道整体的稳定性以及抗压强度;2当裂纹在隧道拱肩或拱顶部位时,裂纹倾角θ=45°时,隧道的稳定性最差,最容易破坏;3当裂纹在隧道底板与边墙交界处时,隧道最容易破坏,整体稳定性最差。  相似文献   

3.
为探究木寨岭公路隧道2#斜井围岩大变形力学机制,结合离散元3DEC数值计算软件,分析了节理不同的倾角条件下对隧道稳定性的影响;并且对不同埋置深度以及岩石含水状态下的稳定性进行分析。结果表明:在45°的围岩节理倾角条件下,隧道变形更加明显,隧道变形失稳的现象随着其埋置深度的增加而严重。当隧道深度为500 m时,围岩发生失稳,具体表现为拱肩处薄板弯曲破坏和滑移失稳,围岩吸水后强度降低,表现出了软岩的流变特性,加速了围岩的破坏。  相似文献   

4.
寒区裂隙岩体受冻融作用的影响经常发生断裂破坏。为了研究岩桥倾角对裂隙岩体冻胀扩展过程、断裂破坏特征以及强度损失的影响机制,利用相似材料制备含不同岩桥倾角的双裂隙类砂岩试样,并开展一系列裂隙注水、不注水的冻融循环和单轴压缩试验,得到冻胀裂纹扩展特性及对类砂岩力学特性的影响规律。研究结果表明:(1)受裂隙冻胀力的驱使,冻胀裂纹不断扩展延伸,并伴随着"枝状"微裂纹的生长;(2)冻胀裂纹的外尖端主要沿着初始裂隙方向扩展,而内尖端受应力干扰作用会朝着另一条预制裂隙外尖端发生偏转,且岩桥倾角?越大,这种偏转效应越明显;(3)试样单轴压缩破坏模式容易受到冻胀裂纹的影响,当岩桥倾角?=90°~135°时,主要沿着冻胀裂纹方向发生剪切破坏,导致试样强度明显降低;而当?=180°时,冻胀裂纹不再是试样单轴压缩破坏的主要诱因,对其强度损失和断裂特征几乎没有影响。  相似文献   

5.
基于数字图像处理技术和RFPA2D-DIP软件建立了含不同裂纹几何分布的混凝土真实细观结构的数值模型,模拟了单轴压缩作用下混凝土内蕴裂纹的扩展变形规律及破裂过程,研究了裂纹几何分布及细观非均匀性对混凝土力学结构效应的影响。结果表明:随着裂纹倾角增大,试样的峰值强度升高,翼裂纹长度变短,裂纹萌生位置不断向预制裂纹尖端靠近;随着裂纹长度增加,试样的峰值强度降低,裂纹倾角对材料强度的影响显著;预制裂纹长度对材料的破坏模式有一定影响,骨料对翼裂纹的萌生及扩展具有一定的阻碍作用;当15°≤α≤45°时裂纹萌生及扩展较易,当裂纹倾角为60°和75°时,翼裂纹很难萌生及扩展,在靠近峰值应力时裂纹突然萌生扩展,最终形成劈裂破坏,研究结果对混凝土失稳破坏机理的研究具有一定参考意义。  相似文献   

6.
基于3种不同纤维混凝土材料试验,结合数字图像相关(DIC)技术得到理论研究所需的损伤本构参数,通过建立围岩–隧道结构数值模型,采用以应力强度因子和稳定安全系数为解析理论基础的有限元位移法,分析隧道二衬为常规混凝土和不同类型纤维混凝土工况下,不同裂缝位置、深度、宽度、倾角、车速和围岩等级等参数对带缝衬砌结构稳定性的影响规律。结果表明:衬砌裂缝在车载下呈剪压受力模式,相比于常规混凝土,纤维混凝土可有效提高带缝衬砌结构在车载过程中的结构稳定性,降低裂缝尖端的应力集中现象,其中玻璃纤维能力最强,混合纤维其次,PVA纤维最弱。同时,裂缝从拱脚至拱顶对衬砌结构稳定性的影响呈爬坡趋势,且相比于裂缝宽度,裂缝深度和倾角对车载下带缝衬砌结构的稳定性影响更为明显,拱顶裂缝倾角θ=45°时结构稳定性最差,以此为分界线的0°<θ<4 5°区域比45°<θ<9 0°更为危险,且其危险程度都随车速的增大而增大。当隧道洞周围岩为强度较低的V级时,纤维混凝土对结构稳定性的强化效果大幅降低,此时θ=45°的拱顶斜裂缝在裂缝深度较浅时结构就容易进入危险状态,工程中需特别注意此类情况的裂缝修复。  相似文献   

7.
拉锚支护结构是一种针对软弱围岩隧道的柔性支护结构,该结构相对于传统的刚性支护在理论上具有相当的优势。为了研究拉锚支护结构的支护机理,利用DSCM(数字散斑相关法)对拉锚支护结构进行模型试验,主要得出了如下结论:(1)通过研究围岩的竖向位移发展状况,得出拉锚结构支护下的软弱围岩可以在内部形成承压拱系,并承担上部围岩压力;(2)分析了加载过程中模拟围岩的正应变和剪应变的发展,得出拉锚支护结构下隧道拱脚处围岩所受的压应力较大、隧道拱腰处围岩受剪应力较大;(3)对比坍落拱机理,得出拉锚结构支护下承压拱系的形成机理为:围岩塑性区域扩大、先形成的承压拱内应力减小促使了新承压拱的形成,并从应力方向角度分析了围岩45°剪切的破坏成因。  相似文献   

8.
为研究软弱岩体中隧道开挖引起的围岩失稳破坏特征以及锚杆的加固效应,以IV级围岩为参照对象,开展一系列无锚杆和有锚杆支护条件下的隧道开挖地质力学模型试验,并对拱顶围岩的位移、应力和宏观破坏形式的发展变化规律进行分析。研究结果表明:(1)隧洞开挖后,围岩破坏始自隧道两侧拱脚,渐次向上延伸并塌落成拱;(2)由于锚杆的悬吊挤压作用及其与岩层的组合梁效应,显著减少了拱顶岩体塌落范围;(3)锚杆通过对岩体施加黏锚力,提高了锚固范围内岩体的强度和韧性,有利于增强围岩的承载能力和抵抗变形能力;(4)锚杆支护对围岩应力分布起调节作用,使得围岩能在较高的能量状态下获得稳定平衡,并延缓了围岩进入"软化"阶段。上述研究成果可为软弱隧道围岩稳定性评价以及支护结构的设计与施工提供一定的借鉴和参考作用。  相似文献   

9.
 由于爆破开挖,巷道内常含有径向裂隙,并影响巷道的稳定性,为了详细地研究含径向裂纹巷道在冲击载荷作用下的动态断裂行为,采用砂岩材料制作巷道模型试样进行中低速冲击动态断裂试验,并采用AUTODYN有限差分软件进行数值模拟分析。分析巷道对称轴线上的径向裂纹在冲击荷载作用下的扩展特性及止裂现象,并采用试验–数值–解析法计算出裂纹的起裂韧度及扩展速度等参数。研究结果表明:(1) 巷道围岩在静力载荷作用和动力载荷作用下的破坏行为有较大差异,动力载荷下破坏仅是裂纹尖端处的起裂、扩展;而静力载荷下破坏除了发生在裂纹尖端处,也会在巷道拱肩、拱脚及两侧帮处发生破坏。(2) 巷道对称轴线上的裂纹在冲击载荷下的扩展路径大致沿着裂纹的原方向扩展,扩展路径中存在明显的止裂现象。(3) 采用试验–数值–解析法能够较好地计算出裂纹的起裂速度及扩展速度,进一步采用位移外推法能够求解出巷道内裂纹的动态应力强度因子时程曲线,利用测试的裂纹起裂时间确定起裂韧度。  相似文献   

10.
为了解决深埋老黄土隧道初期支护因围岩弱化挤压而破坏的现象,为隧道支护破坏整治提供依据,以阳山隧道出口深埋老黄土段为工程依托,对不同含水率下隧道变形规律进行了统计分析,然后综合采用变形反演、强度折减数值计算和实测支护内力规律对比的方法对初期支护的整体受力状态和受力规律进行了研究,最后通过数值计算对初期支护受力关键部位的破坏过程和破坏机理进行了分析。得到如下结论:(1)深埋老黄土隧道变形规律与围岩含水率相关,在围岩含水率低于老黄土塑限前,隧道的变形量小、稳定速度快、拱顶沉降大于水平收敛,含水率大于塑限后,隧道变形量显著增加、持续时间长、水平收敛大于拱顶沉降;(2)初期支护全环整体处于小偏心受压模式,受力关键部位为拱部,随着围岩的不断弱化,支护小偏心受压模式不变、内力逐渐增加,最大内力由拱腰转移至拱脚处;(3)在小偏心压力作用下支护结构为“压-剪”控制破坏,表现为混凝土表面压碎剥落、内部斜向剪切破坏,锁脚锚管的存在对结构破坏发展方向有引导作用,使得结构由“X”型对称剪切破坏转化为固定方向的斜截面剪切破坏。建议支护破坏整治方案采用可提高结构斜截面抗剪强度的加强措施,或采用限阻耗能型支护来释放围岩压力并减小结构内力。  相似文献   

11.
砂泥岩互层岩体广泛分布于西南地区,隧道开挖后围岩容易产生沿软弱层面的滑移破坏,岩层倾角对隧道施工安全性具有重要影响。为了探索不同岩层倾角下隧道开挖后围岩的破坏规律,以永安隧道为研究背景,通过离散元软件PFC2D,研究了岩层倾角对开挖隧道围岩破坏规律的影响。结果表明:在模型的运算过程中,隧道围岩出现渐进性破坏规律;岩层倾角对于围岩破坏规律具有明显的影响,其通过改变隧道穿过软层岩体的面积,从而影响围岩的破坏规律;随着岩层倾角变大,隧道围岩塌方面积与隧道截面面积的比值和隧道围岩裂隙数量经历了一个由增加到减小再到增加的动态过程;隧道的拱顶、左洞的拱腰及拱脚在岩层倾角较小时几乎未遭到破坏。  相似文献   

12.
为了揭示隧道穿越断层期间结构力学响应特性,通过室内模型试验研究断层倾角为45°、60°、75°时采用台阶法进行开挖施工的围岩压力、围岩位移和衬砌应力变化情况。结果表明:断层倾角越大,围岩压力值越高,断层倾角为75°、60°时围岩压力分别为45°的1.169倍、1.089倍;拱部围岩压力影响范围达1.0倍洞径,拱腰、边墙处影响范围为0.5倍洞径;断层倾角越大,围岩径向位移值越高,断层倾角为75°、60°时径向位移达45°的1.112倍、1.057倍;拱部围岩位移影响范围达1.0倍洞径,拱腰、边墙处影响范围为0.5倍洞径;由于存在断层结构,隧道开挖后形成较大松散压力,衬砌结构呈“扁坦式”受力状态,边墙位置衬砌应力最大,拱顶、拱腰处次之;断层倾角越大,衬砌应力值越高,第一施工循环拱顶位置衬砌应力在断层倾角75°、60°时分别为45°的1.176倍、1.079倍,拱腰处为1.187倍、1.089倍,边墙处为1.169倍、1.082倍;第二循环拱顶位置衬砌应力在断层倾角75°、60°时分别为45°的1.136倍、1.067倍,拱腰处为1.158倍、1.075倍,边墙处为1.156倍、1.077倍...  相似文献   

13.
结合三明铁路隧道工程,利用弹塑性理论和离散单元法的基本原理,建立了离散元程序UDEC数值计算模型,并通过实测数据对数值模型进行验证,三明隧道开挖施工过程数值模拟结果表明:1三台阶法开挖施工有效抑制了软岩隧道围岩的大变形,且竖向位移主要集中在隧道拱顶和拱底处,水平位移主要集中在隧道两侧拱脚处;2受节理分布和断层的影响,隧道不同方向的位移场变形并不对称,同时隧道两侧拱脚处围岩的稳定程度相对较差,因此在施工过程中应加强拱脚稳定措施。最后将模拟数据与相应规范进行比较,进而对软岩隧道施工过程中隧道围岩稳定性进行评价,从而为软岩隧道的安全施工提供了技术保障。  相似文献   

14.
研究不同开挖方式对近距离交叠隧道的地层和围岩的影响,揭示不同开挖方式下交叠区围岩及既有隧道衬砌的变形及应力–应变变化规律,为近距离交叠地下工程的变形控制、支护设计和开挖优化设计提供理论依据。通过FLAC3D数值模拟,研究在台阶法、眼镜法、CRD法3种不同开挖方式下交叠区围岩及既有隧道衬砌的变形及应力–应变发展规律、交叠区围岩塑性破坏规律,研究结果如下:(1) 不同开挖方式对交叠隧道施工过程中不同位置的影响程度不同,揭示既有隧道衬砌变形机制演变过程和衬砌破坏的危险点;(2) 根据围岩塑性区发展和隧道衬砌变形量,开挖下部新线隧道时CRD法优于眼镜法和台阶法,CRD法开挖下部隧道时对变形控制效果最好;(3) 新建隧道穿越既有隧道时,比较理想的施工方案为台阶法→CRD法→台阶法;(4) 任何开挖施工方法都会使已建隧道衬砌的4个部位(拱顶、拱脚、直墙边及拱底)承受拉应力,且拱脚处的最大、最小主应力最大,最易发生破坏。  相似文献   

15.
为分析断层与隧道相对位置及断层倾角对隧道围岩稳定性的影响,以石吉高速五峰山1号隧道为例,研究了基于断层特征下的围岩稳定性.结果表明,断层距离隧道2倍洞宽以内时,断层对围岩稳定性的影响较大.隧道两侧围岩位移的分布和变化趋势不再对称;隧道穿越断层对围岩稳定性影响最大,在拱肩时次之,在拱脚时较小;随着断层与隧道距离的减小,断层对围岩稳定性的影响增加;随着断层倾角的增加,断层上盘围岩测点竖向位移先减后增,下盘测点竖向位移先增后减.断层倾角为45.左右时,隧道围岩最为稳定.  相似文献   

16.
以铁路隧道为背景,采用数值分析手段,并结合部分现场监测资料,对软弱围岩隧道台阶法施工过程中隧道拱脚变形特征、上台阶基底围岩失稳形态及拱脚稳定性控制技术进行分析。结果表明:(1)软弱围岩隧道施工过程拱脚沉降和水平收敛均表现突出,在实际工程中,拱脚变形控制是软弱围岩大变形控制的关键之一。(2)拱脚部位围岩屈服程度相对较高是该处施工变形显著的根本原因。在台阶法施工过程中,基底围岩的破坏形式随台阶高度的增加由拱脚局部失稳逐渐向基底整体剪切失稳过渡。(3)从对隧道拱脚及洞周变形控制效果出发,IV级围岩可采用长台阶法施工,V级围岩宜采用短台阶法施工,而VI级围岩应采用微台阶法施工。(4)从不同台阶高度条件下极限位移的计算结果可以看出,对于软弱围岩隧道,施工中在确保掌子面稳定的前提条件下,适当增加台阶高度有利于围岩的稳定。(5)扩大拱脚和临时仰拱2种工法对控制拱脚及洞周变形均有明显的效果。扩大拱脚技术适用于拱部沉降显著的工程,而临时仰拱技术则更适用于水平收敛显著的区段。  相似文献   

17.
以铁路隧道为背景,采用数值分析手段,并结合部分现场监测资料,对软弱围岩隧道台阶法施工过程中隧道拱脚变形特征、上台阶基底围岩失稳形态及拱脚稳定性控制技术进行分析。结果表明:(1)软弱围岩隧道施工过程拱脚沉降和水平收敛均表现突出,在实际工程中,拱脚变形控制是软弱围岩大变形控制的关键之一。(2)拱脚部位围岩屈服程度相对较高是该处施工变形显著的根本原因。在台阶法施工过程中,基底围岩的破坏形式随台阶高度的增加由拱脚局部失稳逐渐向基底整体剪切失稳过渡。(3)从对隧道拱脚及洞周变形控制效果出发,IV级围岩可采用长台阶法施工,V级围岩宜采用短台阶法施工,而VI级围岩应采用微台阶法施工。(4)从不同台阶高度条件下极限位移的计算结果可以看出,对于软弱围岩隧道,施工中在确保掌子面稳定的前提条件下,适当增加台阶高度有利于围岩的稳定。(5)扩大拱脚和临时仰拱2种工法对控制拱脚及洞周变形均有明显的效果。扩大拱脚技术适用于拱部沉降显著的工程,而临时仰拱技术则更适用于水平收敛显著的区段。  相似文献   

18.
徐文根  魏珊  陈建 《江西建材》2011,(2):29-30,317
本文以工程概化的思想,设计了15°、30°、45°、60°、75°五种典型倾角结构面分别位于直墙拱形洞室拱肩附近、横穿直墙拱形洞室断面及位于直墙拱形洞室拱脚附近不同情况,并建立数值模型,开展不同倾角、不同位置结构面控制条件下围岩应力分布、围岩变形与破坏的特征分析,为探讨不同结构面控制围岩变形与破坏的机理提供理论基础,具有显著的工程应用价值。  相似文献   

19.
陡倾岩层隧道由于层状结构的存在,在开挖过程中,围岩的破坏机理与方式、围岩与结构的变形、受力等特征明显不同于其它岩体隧道。本文在陡倾岩层隧道开挖破坏机理探讨的基础上,通过三维数值模拟,对不同陡倾角条件下围岩与结构的变形、受力特征进行了计算,分析了隧道开挖力学特性与倾角的关系,提出了陡倾岩层隧道设计施工建议。计算结果表明:倾角越大,隧道发生顺层滑移破坏的概率越大,地表沉降、拱顶位移、围岩主应力随倾角的增大而增大,但拱脚位移、围岩剪应力、喷射混凝土内力与倾角并非一致性关系。  相似文献   

20.
通过室内试验对恒定倾角(45°)裂纹损伤试件裂纹长度差异对混凝土力学性研究,并结合PFC颗粒流数值模拟软件分析结果裂纹扩展规律,进一步阐述其破坏形态及机理。研究表明:(1)裂纹损伤试件强度随着裂纹长度增大逐渐降低,降低速率先减小后增大;弹性模量随着裂纹长度增大逐渐降低,其中降低速率先增大后减小最后再降低。(2)裂纹长度为10 mm时,试件破坏形态为整体破坏;裂纹长度为20~30 mm时,试件破坏沿着初始裂纹扩展方向破坏,部分沿着初始裂纹反方向破坏,表现出裂纹部分影响破坏形态;裂纹长度≥40 mm,试件完全沿着初始裂纹扩展方向破坏,无反向裂纹产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号