首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

2.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

3.
通过选用不同的活化剂(NaOH、ZnCl_2和HNO_3),将棉秆热解炭化、活化后制备棉秆基活性炭,研究他们对Cr(Ⅳ)的吸附性能。结果表明,对100 m L模拟Cr(Ⅳ)废水,当实验温度25℃、吸附剂投加量0.2 g、初始Cr(Ⅳ)的质量浓度10 mg/L,棉秆基活性炭对Cr(Ⅳ)在200 min后达到吸附平衡,最大吸附率可达85%。通过动力学分析,该吸附过程符合Lagergren准2级吸附动力学模型。以HNO_3为活化剂时制备的棉秆基活性炭吸附效果最好,平衡吸附量为8.084 mg/g。  相似文献   

4.
以氯化锌作为活化剂制备银叶树果壳活性炭,分别考察了活化温度、活化剂浓度、料液比、活化时间对活性炭产品亚甲基蓝脱色率的影响。通过正交试验优化,得出在最佳制备工艺为,温度400℃,ZnCl_2浓度500 g/L,料液比1∶3(g/m L),活化时间60 min,所得成品亚甲基蓝脱色率达到97.06%,碘吸附值达到1 018.85 mg/g,苯酚吸附值达到802.66 mg/g,脱色、吸附性能优良,符合商品活性炭标准。  相似文献   

5.
以棉花秸秆为原料、ZnCl_2/AlCl_3为改性剂制备活性炭(AC)。利用中心复合设计法(CCD)对主要影响因子进行参数优化,并利用预测模型确定最佳制备工艺为:活化温度为640℃、浸渍质量比(棉秸秆与改性剂的质量比)为1.58∶1、活化时间为87 min、改性剂配比(改性剂中ZnCl_2与AlCl_3的质量比)为9∶1。在实际实验条件下,样品得率、总酸含量分别为44.32%、0.87mmol/g,与模型预测值误差分别为1.79%、1.04%。利用碱性有机染料甲基紫研究其吸附性能,当活性炭投加量为1.18 g/L、溶液质量浓度为82.00 mg/L时,其对甲基紫去除率均能达到90%以上。ZnCl_2/AlCl_3改性棉秸秆基活性炭具有良好的吸附性能,为棉秸秆的应用提供了参考依据。  相似文献   

6.
荔枝壳活性炭对Cr(Ⅵ)吸附性能的研究   总被引:1,自引:0,他引:1  
以荔枝壳为原料,氢氧化钠为活化剂、微波加热,制备了荔枝壳活性炭。并以此活性炭为吸附剂吸附溶液中的Cr(Ⅵ),考察了初始Cr(Ⅵ)质量浓度、活性炭用量、pH、吸附时间、吸附温度对Cr(Ⅵ)的吸附量及去除率的影响。结果表明吸附Cr(Ⅵ)的最佳工艺条件为:荔枝壳活性炭质量1.6 g/L、Cr(Ⅵ)初始质量浓度50 mg/L、pH=3、吸附θ为25℃、吸附t为240 min,在此工艺条件下,荔枝壳活性炭吸附剂对Cr(Ⅵ)具有良好的吸附能力,对Cr(Ⅵ)吸附量可达30.25mg/g,Cr(Ⅵ)的去除率可达96.8%。吸附过程符合二级吸附动力学模型。热力学参数ΔG、ΔH、ΔS表明荔枝壳活性炭对Cr(Ⅵ)的吸附过程是自发、吸热过程。  相似文献   

7.
通过ZnCl_2活化法制备出废菌渣活性炭(MRAC),采用扫描电镜、能量-色散光谱、傅立叶变换红外光谱仪对其进行了表征分析,并研究了去除水中Cr(Ⅵ)的性能。结果表明,MRAC具有较好去除水中Cr(Ⅵ)的性能;在温度25℃、pH为7、MRAC投加量0.5 g、反应时间120 min、50 mL的Cr(Ⅵ)溶液初始质量浓度50 mg/L的优化条件下,MRAC对Cr(Ⅵ)的去除率高达99.98%,处理后的水满足GB 8978-1996中对Cr(Ⅵ)含量的要求。MRAC对水中Cr(Ⅵ)的吸附服从Langmuir等温方程(最大吸附量31.55 mg/g),吸附反应具有吸热性及自发性。与其他活性炭相比,MRAC去除废水Cr(Ⅵ)的效果更佳,具有较好的经济效益和环境效益。  相似文献   

8.
用20%氯化锌浸泡甘蔗渣,改性后碳化制备活性炭,对Cr(Ⅵ)进行吸附研究。考察了活性炭的投加量、溶液pH、吸附时间、初始浓度、温度等因素对吸附的影响。结果显示,在ρ[Cr(Ⅵ)]为50 mg/L、ρ(吸附剂)为3 g/L、pH为2、吸附θ为50℃、t为45 min的条件下,废水中Cr(Ⅵ)的去除率可高达99.9%,最大的吸附量为166.51mg/g。活性炭对Cr(Ⅵ)的吸附过程可以用Langmuir、Freundlich、Temkin等温吸附方程和二级吸附速率方程进行描述。  相似文献   

9.
《应用化工》2022,(9):1624-1628
采用NaBH_4还原FeCl_3制备纳米铁(nZVI),利用标准粘土为载体制备了负载纳米铁(C-nZVI),用于去除水体中的重金属Cr(Ⅵ),考察起始pH、Cr(Ⅵ)初始浓度、C-nZVI的量对Cr(Ⅵ)去除率的影响。结果表明,Cr(Ⅵ)的去除随着起始pH和Cr(Ⅵ)初始浓度的降低及纳米铁剂量的增加而增加,当起始pH为4.14,Cr(Ⅵ)初始浓度为10mg/L,纳米铁投加量为30g/L时,Cr(Ⅵ)的去除率达到95%。并对C-nZVI去除Cr(Ⅵ)的机理进行了推测,表明其涉及还原和共沉淀历程。  相似文献   

10.
《应用化工》2016,(9):1624-1628
采用NaBH_4还原FeCl_3制备纳米铁(nZVI),利用标准粘土为载体制备了负载纳米铁(C-nZVI),用于去除水体中的重金属Cr(Ⅵ),考察起始pH、Cr(Ⅵ)初始浓度、C-nZVI的量对Cr(Ⅵ)去除率的影响。结果表明,Cr(Ⅵ)的去除随着起始pH和Cr(Ⅵ)初始浓度的降低及纳米铁剂量的增加而增加,当起始pH为4.14,Cr(Ⅵ)初始浓度为10mg/L,纳米铁投加量为30g/L时,Cr(Ⅵ)的去除率达到95%。并对C-nZVI去除Cr(Ⅵ)的机理进行了推测,表明其涉及还原和共沉淀历程。  相似文献   

11.
以油茶果壳为原料,以氯化锌为活化剂,在减压条件下热裂解制备活性炭。探讨氯化锌溶液的质量分数、体系压力、活化温度、活化时间对活性炭吸附性能的影响;通过低温氮气吸-脱附表征了样品的比表面积及孔结构,采用红外光谱仪分析了样品的表面官能团。得到制备该活性炭的最佳工艺条件为:氯化锌溶液的质量分数为60%、料液比1∶3(即每毫克固体物料加入3 m L液体物料,下同)、体系压力为0.05 MPa、活化温度为450℃、活化时间为1 h,在该条件下得到的活性炭碘吸附值为1 120 mg/g,亚甲基蓝吸附值为373.16 mg/g,比表面积为2 023.15 m2/g,总孔体积为2.34 cm3/g,平均孔径为4.63 nm。减压条件下制备的活性炭具有优良的吸附性能。  相似文献   

12.
KOH—K2CO3活化废弃焦粉制备活性炭的研究   总被引:3,自引:0,他引:3  
采用KOH-K2CO3复合活化剂,对废弃焦粉在不同活化剂与焦粉比、活化温度、活化时间、粒径大小等工艺条件下进行正交实验,得出影响制备焦粉活性炭的主次因素为活化温度、活化剂与焦粉比、粒径大小、活化时间;制备焦粉活性炭的最优方案为活化剂与焦粉比6:1,活化温度850℃,活化时间100min,粒径大小<0.05mm.制备的焦粉活性炭其比表面积为303m#/g,总孔、中孔、微孔容积分别为0.392 4cm3/g、0.215 9cm3/g、0.143 1cm3/g.焦粉活性炭有利于吸附相对分子量较大的物质.  相似文献   

13.
废茶活性炭的制备及其孔径结构的控制   总被引:1,自引:0,他引:1  
宋磊  张彬  陈家元  冯利 《化工进展》2014,(6):1498-1505
利用废茶为原料,分别以K2CO3、ZnCl2为活化剂,在不同的活化温度、活化时间及不同的浸渍比例下制备废茶活性炭。结果表明,K2CO3、ZnCl2活化制备的废茶活性炭孔径结构均以微孔为主,其中K2CO3活化制备的废茶活性炭BET可达1388m2/g,ZnCl2活化制备的废茶活性炭BET可达1596m2/g;活化温度对废茶活性炭的中孔结构影响较大,以ZnCl2为活化剂时,在温度为350℃时就出现中孔,温度由500℃升至700℃后,中孔容量由0.55cm3/g减小到0.06cm3/g,而以K2CO3为活化剂时,在温度达800℃后才开始出现中孔结构;ZnCl2活化制备的废茶活性炭在活化时间为0.5h时就有中孔出现,当活化时间从0.5h延长至1.5h时,微孔径逐渐由0.83nm增大至0.87nm,当活化时间达到2h后,活性炭结构得到重排,微孔容量提高而中孔容量降低,以K2CO3为活化剂时,活化时间达2.5h后才出现中孔结构;当两种活化剂的浸渍比为1∶1时废茶活性炭的微孔容量最大。  相似文献   

14.
杨森  杨绍斌  李阳  董伟  万世鹏 《硅酸盐通报》2018,37(4):1213-1220
为制备煤基活性炭超级电容器,选褐煤、焦煤、无烟煤三种典型煤种为原料,以盐(KCl)、碱(KHCO3)、酸(H3PO4)为活化剂,探索煤种和活化剂的优化组合.通过电性能测试结果表明:KHCO3制备活性炭超级电容器性能最好;在KHCO3作为活化剂,褐煤、焦煤、无烟煤作原料条件下,褐煤制备的活性炭超级电容器性能最优,随活化温度的升高其比表面积先增大后减小,550 ℃时活性炭制备超级电容器性能最佳,比表面积最高达360 m2/g,比电容量和充放电效率最高分别为73 F/g和62.3%,经过10次循环后,容量保持率最高为70%.  相似文献   

15.
以废旧棉纺织品为原材料,K_2CO_3为活化剂,采用化学活化法制备棉纤基活性炭。选取活化温度、浸渍比、浸渍时间和活化时间为影响因子,探讨不同因素对活性炭碘吸附值和得率的影响,通过分析在不同条件下活性炭的比表面积及孔结构,确定棉纤基活性炭的最佳制备条件。结果表明:K_2CO_3活化法制备棉纤基活性炭的最佳条件为活化温度850℃、浸渍比1∶1、浸渍时间24 h、活化时间2 h;在该条件下,活性炭样品比表面积为1 697.38 m2/g,碘吸附值为1 637.47 mg/g,得率为14.15%;样品的中孔和微孔孔容分别为0.56 cm3/g和0.61 cm3/g。废旧棉织物可以制备出性能优良的活性炭,K_2CO_3活化法在优化棉纤基活性炭的制备工艺中是可行的。  相似文献   

16.
以废弃的辣椒秸秆为原料,KOH为活化剂,制备高比表面积活性炭,研究了碱炭比、活化温度、炭化温度及活化时间对活性炭吸附性能的影响。结果表明,活性炭制备的最佳工艺条件为:碱炭比为3∶1,活化温度为700℃,炭化温度为450℃,活化时间为40 min。在此条件下,制得的活性炭碘吸附值2 356.40 mg/g,亚甲基蓝吸附值41.3 mL/0.1 g,BET比表面积为2 432.135 m2/g,Langmuir比表面积高达3 270.478 m2/g,吸附总孔容为2.064 cm3/g,平均孔径为3.246 nm。SEM和XRD观察发现,辣椒秆活性炭呈不定形态,具有丰富和发达的蜂窝状孔隙结构。  相似文献   

17.
油茶果壳活性炭的制备及其对苯酚的吸附   总被引:2,自引:0,他引:2  
余少英 《应用化工》2010,39(6):823-826
以油茶果壳为原料,60%的磷酸溶液为活化剂制备了油茶果壳活性炭,探讨了料液比、活化温度与时间对油茶果壳活性炭吸附苯酚性能的影响。结果表明,在活化温度为600℃,活化时间为90 min,料液比(g∶g)为1∶3时,制备的油茶果壳活性炭对苯酚的吸附效果最好。油茶果壳活性炭对苯酚吸附的最佳条件为:在30℃,0.1 g油茶果壳活性炭对100 mL的500 mg/L苯酚吸附5 h后,吸附量达到了218.0 mg/g。  相似文献   

18.
用农业废弃物核桃壳制备的活性炭(WSAC)吸附处理六价铬,可达到以废治废效果。对核桃壳基活性炭(WSAC)表面结构进行红外光谱表征,测定其热重、差热等参数的变化,分析其热性质以及热稳定性。考察影响吸附热力学的参数,包括含Cr(Ⅵ)模拟废液的pH、Cr(Ⅵ)初始质量浓度以及WSAC投加量对Cr(Ⅵ)吸附去除率的影响。结果显示,影响WSAC吸附六价铬参数的最优值分别为:Cr(Ⅵ)初始浓度为4 mg/L、pH=3.95、WSAC投加量为2 mg/mL。Cr(Ⅵ)去除率影响因素分析表明,WSAC投加量对Cr(Ⅵ)去除率的影响最大,其次为溶液pH及初始浓度。  相似文献   

19.
以油茶果壳为原料,以氯化锌为活化剂,在减压条件下热裂解制备活性炭。探讨氯化锌溶液的质量分数、体系压力、活化温度、活化时间对活性炭吸附性能的影响;通过低温氮气吸-脱附表征了样品的比表面积及孔结构,采用红外光谱仪分析了样品的表面官能团。得到制备该活性炭的最佳工艺条件为:氯化锌溶液的质量分数为60%、料液比1∶3(即每毫克固体物料加入3 m L液体物料,下同)、体系压力为0.05 MPa、活化温度为450℃、活化时间为1 h,在该条件下得到的活性炭碘吸附值为1 120 mg/g,亚甲基蓝吸附值为373.16 mg/g,比表面积为2 023.15 m2/g,总孔体积为2.34 cm3/g,平均孔径为4.63 nm。减压条件下制备的活性炭具有优良的吸附性能。  相似文献   

20.
以天然鳞片石墨为原料,以K2Cr2O7/HNO3/HCl O4/CH3COOH作为氧化插层体系,探索了无硫可膨胀石墨的制备工艺。最佳反应条件∶石墨(g)∶重铬酸钾(g)∶硝酸(m L)∶高氯酸(m L)∶冰乙酸(m L)为5∶1.6∶3∶10∶3,氧化温度为30℃,氧化时间为30min,该条件下制备的可膨胀石墨膨胀容积达到320 m L/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号