首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2−x N x films were deposited on ITO glass by reactive dc magnetron sputtering method under different O2/N2 flow ratios. A NiO film was deposited by chemical bath deposition onto the as-prepared ITO/TiO2−x N x film to form an ITO/TiO2−x N x /NiO composite electrode. The morphology, crystal structure and composition of the TiO2−x N x films were characterized by SEM, XRD and XPS. The photoelectrochemical properties of the TiO2−x N x films were investigated by means of UV–Vis absorption spectra and photocurrent measurements. The results showed that the TiO2−x N x film sputtered under O2/N2 flow ratio of 1:2 exhibited a higher photocurrent response than the others. Correspondingly, the TiO2−x N x /NiO electrode consisting of the sputtered TiO2−x N x film under O2/N2 flow ratio of 1:2 also showed the best photoelectrochromic feature.  相似文献   

2.

Abstract  

An effective heterogeneous catalyst, CaxMg2−xO2, was prepared and tested for soybean oil transesterification with methanol. The catalysts were characterized by using X-ray diffraction , Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis , and Hammett indicator method. The catalyst with Ca/Mg ratio of 1.0 and calcined at 800 °C exhibited high catalytic activities. Under the suitable transesterification conditions (methanol/oil ratio 12:1, catalyst loading 6 wt%, reaction time 5 h, at reflux of methanol), the oil conversion of 91.3% could be achieved. The catalyst can be easily recovered and reused without significant deactivation.  相似文献   

3.
Cobalt-containing perovskite oxides are promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolyzers. However, a lack of fundamental understanding of oxide surfaces impedes rational catalyst design for improved activity and stability. We couple electrochemical studies of epitaxial La1?xSrxCoO3?δ films with in situ and operando ambient pressure X-ray photoelectron spectroscopy to investigate the surface stoichiometry, adsorbates, and electronic structure. In situ investigations spanning electrode compositions in a humid environment indicate that hydroxyl and carbonate affinity increase with Sr content, leading to an increase in binding energy of metal core levels and the valence band edge from the formation of a surface dipole. The maximum in hydroxylation at 40% Sr is commensurate with the highest OER activity, where activity scales with greater hole carrier concentration and mobility. Operando measurements of the 20% Sr-doped oxide in alkaline electrolyte indicate that the surface stoichiometry remains constant during OER, supporting the idea that the oxide electrocatalyst is stable and behaves as a metal, with the voltage drop confined to the electrolyte. Furthermore, hydroxyl and carbonate species are present on the electrode surface even under oxidizing conditions, and may impact the availability of active sites or the binding strength of adsorbed intermediates via adsorbate–adsorbate interactions. For covalent oxides with facile charge transfer kinetics, the accumulation of hydroxyl species with oxidative potentials suggests the rate of reaction could be limited by proton transfer kinetics. This operando insight will help guide modeling of self-consistent oxide electrocatalysts, and highlights the potential importance of carbonates in oxygen electrocatalysis.  相似文献   

4.
In this study, FeBxFe2?xO4 nanoparticles (NPs) were synthesized by the polyol method. The M–H hysteresis curves exhibit superparamagnetic characteristics that are both coercivity and remanent magnetization values are negligible. The particle size dependent Langevin function was applied to calculate the magnetic particle dimensions around 9 nm. The measured magnetic moments of NPs are in range of (1.52–2.2) µB and almost half or less with respect to 4 µB of bulk Fe ferrite. Magnetic anisotropy was specified as uniaxial and calculated effective anisotropy constants (K eff ) are between 43.3 × 104 and 19.4 × 104 emu/g. The UV–Vis diffuse reflectance spectroscopy and Kubelka–Munk theory were used to determine the optical properties. The estimated optical band gap values (2.15–2.48 eV) of FeBxFe2?xO4 NPs are bigger with respect to reported values (1.88–2.12 eV) for Fe3O4 NPs in the literature. The bigger E g values are mainly attributed to B concentration and partly to quantum confinement effect.  相似文献   

5.
We report on bifurcate reactions on the surface of well-aligned Si1−x Ge x nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−x Ge x nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−x Ge x or SiO2/Si1−x Ge x coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively.  相似文献   

6.
In this paper, the core–shell structured NiFe2O4@TiO2 nanoparticles and nanochains as photocatalysts were successfully prepared through hydrothermal and hydrolysis method. The as-prepared core–shell structure was composed of a magnetic NiFe2O4 core and photocatalytic titanium oxide coating shell. SEM and TEM images characterized the morphology of NiFe2O4@TiO2 nanoparticles. Moreover, the results of XRD patterns proved that the TiO2 coating shell consisted of anatase. The VSM measurements showed that the saturation magnetization values of NiFe2O4 and NiFe2O4@TiO2 nanoparticles was 65 and 53 emu/g, respectively. The photocatalyst of NiFe2O4@TiO2 nanoparticles exhibited the outstanding recyclable performance for RhB. And, the photo_degradation ration of maintained 69 % after the photocatalyst experienced ten photocatalysis experiments, which is better than that of Fe3O4@TiO2 photocatalysts.  相似文献   

7.
Mixed oxides with perovskite structure have been proposed as promising alternative for the solar fuel production via thermochemical redox cycles. For this work, the system La0.6Sr0.4Mn1?xAlxO3 (x?=?0 to 0.8) was selected according to its high thermal stability and rapid oxidation kinetics, and the influence of the Al/Mn ratio on the redox properties was investigated. The characterization of the five oxides samples with different Al content confirmed the high redox capacity and the favorable behavior of these materials in consecutive cycles, as analyzed thermogravimetrically. The results show that following reduction at 1300?°C in inert atmosphere up to 0.32 mmol g?1 of O2 are released, while a 10-cycle reaction test confirms the feasibility of long term operation with these perovskites. It was observed that the reduction extent was enhanced with increasing the Al-content, but the oxidation degree is maximum for compositions near x?=?0.5, corresponding to an O2 release of 0.318 mmol g?1 (δ?=?0.132). After selecting the compositions with more promising redox properties, additional reactions were performed in a lab-scale fixed bed reactor with injection of CO2 in the oxidation step at 900?°C in order to generate CO. In these tests, the most interesting results were obtained for the perovskite La0.6Sr0.4Mn0.6Al0.4O3, with reduction extent of 0.266 mmol?g?1, but the production of CO is in comparison significantly lower (0.114 mmol?g?1). Further studies are required to determine the best operation conditions for thermochemical cycles using those materials.  相似文献   

8.
9.

Abstract  

Nanosized CexM1−xO2−δ (M = Zr, Hf, Tb and Pr) solid solutions were prepared by a modified coprecipitation method and thermally treated at different temperatures from 773 to 1073 K in order to ascertain the thermal behavior. The structural and textural properties of the synthesized samples were investigated by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), BET surface area, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS) techniques. The catalytic efficiency has been performed towards oxygen storage/release capacity (OSC) and CO oxidation activity. The characterization results indicated that the obtained solid solutions exhibit defective cubic fluorite structure. The solid solutions of ceria–hafnia, ceria–terbia and ceria–praseodymium exhibited good thermal stability up to 1073 K. A new Ce0.6Zr0.4O2 phase along with Ce0.75Zr0.25O2 was observed in the case of ceria–zirconia solid solution due to more Zr4+ incorporation in the ceria lattice at higher calcination temperatures. The reducibility of ceria has been increased upon doping with Zr4+, Hf4+, Tb3+/4+ and Pr3+/4+ cations. This enhancement is more in case of Hf4+ doped ceria. Among various solid solutions investigated, the ceria–hafnia combination exhibited better OSC and CO oxidation activity. The high efficiency of Ce–Hf solid solution was correlated with its superior bulk oxygen mobility and other physicochemical characteristics.  相似文献   

10.
Perovskite LaCr1?xCoxO3 (0 ≤ x ≤ 0.5) oxides synthesized by co precipitation method were investigated. X-ray diffraction, thermo gravimetric and differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and electrochemical measurements, were used to characterize the structure, morphology, electrochemical properties of the samples. The studied compounds have orthorhombic and rhombohedral systems in the ranges (0 ≤ x ≤ 0.2) and (0.3 ≤ x ≤ 0.5) respectively. Thermal analysis results indicate that the pure phase was obtained at temperature above 800 °C. The structure and morphology of the samples characterized by SEM measurements indicate that particles have nearly spherical shapes and are agglomerated. The electrochemical measurements indicate that the catalytic activity is strongly influenced by cobalt doping. The highest electrode performance is achieved with large cobalt content.  相似文献   

11.

Abstract  

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La3+ by Sr2+ cations in the series (La1−x Sr x CoO3−δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O2 in vacuum and reduction in H2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La1−x Sr x CoO3−δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T50 (temperature of 50 % toluene conversion) than the previously studied LaNi1−y Co y O3 series.  相似文献   

12.
Single-phase finely dispersed perovskite-like manganites La1 ? x Sr x MnO3 + δ (0 ≤ x ≤ 0.33) with an average particle size of approximately 3μm were synthesized by the pyrohydrolytic method from a stoichiometric mixture of the corresponding metal nitrates at a temperature of 500°C in a water vapor atmosphere. The parameter δ was changed as a result of the subsequent heat treatment. It was established that the manganite La0.67Sr0.33MnO3 + δ synthesized by the pyrohydrolytic method is characterized by a more pronounced change in the magnetoresistance as compared to the manganite that had the same composition but was synthesized according to the conventional ceramic technique.  相似文献   

13.
Gallium-substituted copper indium sulfide (CuIn(1?x)GaxS2) nanoparticles have been synthesized by a convenient solvothermal method without usage of surfactants or toxic reductants such as hydrazine. Thiourea, sodium hydroxide, CuCl2·2H2O, InCl3 and GaCl3 were used as starting materials and ethylene glycol as solvent and reducing agent. The reactions were performed at 200 °C for 16 h. Effect of sodium hydroxide on the reaction products is analyzed. The powders are mainly characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, BET surface area measurements and UV–Vis absorption spectroscopy. The results show that the gallium is successfully incorporated into the chalcopyrite crystal structure. The homogeneous powders obtained are constituted of nanoparticles with sizes in the range 20–30 nm and exhibit a specific surface area close to 65 m2/g. Further, the possible mechanism for the formation of CuIn(1?x)GaxS2 nanocrystals is explained. The optical band gap energies of the nanoparticles were in the range 1.48–1.75 eV.  相似文献   

14.
A study has been made on the effects of the amount of silicon nitride and graphite on the physicomechanical properties of Al2O3–Si3N4–C composites for lining purposes. Adding 2.5–5.0 wt.% silicon nitride and 0.5 wt.% reactive alumina improves the properties, raises their apparent density, and increases the mechanical strength, while reducing the open porosity. Optimized compositions have been determined for refractory materials of Al2O3–Si3N4–C composition, and it has been found that to attain the higher values of physicomechanical properties the amount of graphite should constitute 5–10 wt.%.  相似文献   

15.
Ag2WO4/g-C3N4 composites with different Ag2WO4 concentration and calcination temperature were synthesized via a mixing and heating approach. Various techniques were used to investigate the characters of the as-prepared samples, such as thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy. The degradation of rhodamine B (20 ppm) under visible light was performed to investigate the photocatalytic activity of Ag2WO4/g-C3N4 composites. Results indicate that the Ag2WO4/g-C3N4 is actually Ag/Ag2WO4/g-C3N4 ternary system. 7.5 wt% Ag2WO4/g-C3N4 prepared at 300 °C presented the best photocatalytic performance in rhodamine B degradation. The degradation rate reaches 0.0679 min?1, which is 3.25 times higher than the value of pure g-C3N4. The enhanced activity is attributed to the synergetic effect of Ag2WO4, g-C3N4 and metal Ag. Additionally, cycling experiments also proved that the Ag2WO4/g-C3N4 photocatalyst has good stability.  相似文献   

16.

Abstract  

ZnFe2−xAlxO4 (x = 0, 1, 2) spinels were obtained by microwave-assisted solvothermal method using 1,4-butanediol as reaction medium. The results of XRD and HRTEM studies have indicated higher nanocrystallinity of aluminium containing spinels, and N2 adsorption–desorption measurements have revealed their enhanced textural properties, in particular much higher specific surface areas. NH3-TPD method and cyclohexanol test have shown the variation of surface acid–base properties with the changes in the spinel composition. All studied spinels were active in aniline methylation and proved to be selective for N-methylation leading to N-methylaniline and N,N-dimethylaniline. The main advantage of aluminium containing spinels is that N-alkylation with methanol is possible at significantly lower temperature (200–260 °C) when pure zinc ferrite is almost inactive.  相似文献   

17.
18.
19.
Carbon free LiFe1−x Mn x PO4 (x = 0, 0.05, 0.1, 0.2, 0.4) cathode materials were prepared by a direct-hydrothermal process at 170 °C for 10 h. The structural and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), charge–discharge experiments, cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The electrochemical performance of LiFePO4 prepared in this manner showed to be positively affected by Mn2+-substitution. Among the Mn2+-substitution samples, the LiFe0.9Mn0.1PO4 exhibited an initial discharge capacity of 141.4 mA h g−1 at 0.1 C, and the capacity fading is only 2.7% after 50 cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号