首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
上海交通沿线农田土壤中PAHs分布特征及源解析   总被引:1,自引:0,他引:1  
张希  杨静  刘敏  陈星  吴建 《中国环境科学》2019,39(2):741-749
为探讨交通干线对周围农田土壤环境中16种优先多环芳烃(PAHs)累积的影响,采集了上海市交通干线旁与道路垂向分布的70个农田土壤表层样品及2个土壤柱样品,系统分析了土壤中16种优控PAHs的含量、组成及来源.结果表明上海交通干线旁农田表层土壤PAHs含量范围为23.16~21250.25ng/g,平均值为928.16ng/g,且随着与防护林距离的增加呈现出先下降后增加而后又下降的趋势,农田土壤柱中PAHs含量则表现出随着距土壤深度的增加而上升的趋势.基于正定矩阵因子分析(PMF)模型及特征因子比值法的来源辨析结果,表明表层土壤和土壤柱中的PAHs均主要来源于煤、生物质的燃烧及交通排放.  相似文献   

2.
采集津冀辽地区典型3湖库(于桥水库、衡水湖和大伙房水库)表层沉积物样品共29个,利用GC-MS检测了16种多环芳烃含量.结果 表明,沉积物中∑ PAHs (ng·g-1)分别是337.3 ~1604.1(均值820.0)、461.1 ~1497.5(均值932.3)和102.3 ~2240.5(均值564.9).与国内...  相似文献   

3.
为了解钢铁工业区对土壤环境的影响以及土壤的污染状况,采集上海典型钢铁工业区下风向的14个表层土壤样品,应用气相色谱-质谱联用仪(GC-MS)检测了样品中16种优控PAHs(多环芳烃)的含量水平,分析了钢铁工业区下风向土壤中PAHs的组成分布特征,并利用比值法和主成分分析法对土壤中的PAHs进行溯源.结果表明,钢铁工业区下风向土壤中∑16 PAHs(16种优控PAHs的含量)范围为167.0~2 355.0 μg/kg,∑7PAHs(7种具有致癌作用的PAHs的含量)在∑16 PAHs中平均比例为50.4%,近距离样区(< 1 km)表层土壤中∑16 PAHs平均值最高,为1 057.7 μg/kg,远距离样区(5~10 km)污染相对较轻,平均值为381.4 μg/kg;宝3、宝6和宝9采样点于钢铁工业区烧结工艺的下风向,导致宝3采样点∑16 PAHs最高,为2 355.0 μg/kg,宝3、宝6和宝9采样点土壤中PAHs含量依次降低;表层(0~20 cm)土壤中PAHs单体含量最高的为荧蒽,致癌性最强的苯并[a]芘含量范围为10.0~194.0 μg/kg,环数组成以4环为主,平均比例为46.3%,其次是5~6环,二者平均比例为39.9%,随着距离工业区越远,4环的组成比例越高,5~6环比例降低;比值法和主成分分析法结果显示土壤中PAHs主要来源于石油、煤的燃烧和机动车尾气的排放.研究显示,钢铁工业对多环芳烃贡献较大,下风向土壤中总多环芳烃的含量和高环多环芳烃比例都呈现明显的随距离递减特征,石油、煤的燃烧和机动车尾气的排放是其多环芳烃的最主要来源.   相似文献   

4.
空气颗粒物中PAHs的粒径分布与污染特征   总被引:6,自引:0,他引:6  
本文报告了呼和浩特市不同粒径空气颗粒物样品中菲、蒽、萤蒽、芘、屈、苯并「a」芘、苯并「a」蒽二甲基苯并「a」蒽、二苯并「ah」蒽、苯并「ghi」Bei、晕苯等11多环芳烃化合物的测定结果,以及这些化合物按粒径分布的特征和污染状况。  相似文献   

5.
近20年中国表层土壤中多环芳烃时空分布特征及源解析   总被引:1,自引:0,他引:1  
随着中国经济社会的快速发展,表层土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染问题受到了全社会的高度关注.本研究通过搜集2000 ~2020年间有关我国表层土壤PAHs污染的相关研究,并对筛选得到的166篇文献采样数据综合运用统计学、空间插值分析和污染物特征比值源解析方法...  相似文献   

6.
沈北新区土壤中多环芳烃污染特征及源解析   总被引:4,自引:6,他引:4  
采用均匀网格布点法采集沈阳市沈北新区不同土地利用类型101个表层(0~20 cm)土壤样品,开展土壤中美国环保署优先控制的16种多环芳烃(PAHs)的含量空间分布特征、成分谱分析和污染物来源解析研究.结果表明,沈北新区土壤中16种PAHs(ΣPAHs)总含量为123.7~932.5μg·kg~(-1);PAHs组分以3~4环的中、低环组分为主,其中3环PAHs比例最高;ΣPAHs的空间分布特征明显,呈现出由南向北、自东向西逐渐递减的趋势.在研究区域所涉及的5种土地利用类型土壤中,土壤ΣPAHs含量的高值主要集中在城区绿地和人工绿化林地,其次为设施菜地,水稻田和玉米田中ΣPAHs含量相对较低且无明显空间分布差异.利用特征比值分析和因子分析/多元线性回归分析进行土壤中PAHs的污染源解析,初步确定沈北新区表土中PAHs的主要污染源为燃烧源和石油源的混合源,其中,工业燃煤和机动车尾气是PAHs的主要污染源,其贡献率达79.6%,石油泄漏和焦炉排放贡献率约为16.2%,生物质燃料的燃烧贡献率占4.2%.  相似文献   

7.
基于GIS及APCS-MLR模型的兰州市主城区土壤PAHs来源解析   总被引:1,自引:2,他引:1  
为了解兰州市主城区表层土壤多环芳烃(PAHs)的污染现状,采集兰州市主城区表层土样62份,利用GC-MS(气相色谱-质谱联用仪)分析土样中16种优控PAHs的含量,采用描述性统计方法表征PAHs污染特征,运用APCS-MLR(绝对主成分分析-多元线性回归)模型判断土壤PAHs的来源,并验证模型结果的准确性,最后结合地统...  相似文献   

8.
辽河流域多环芳烃(PAHs)的分布特征及来源解析   总被引:1,自引:0,他引:1  
采用气相色谱-质谱(GC/MS)的分析方法,对辽河水系主要河流的表层水和悬浮物中的16种PAHs进行了定量分析,并对其分布特征、污染水平以及来源进行了探讨。结果显示:颗粒态PAHs的浓度范围为0.41~76.45μg.g-1,溶解态PAHs的浓度范围为32.57~108.47ng.L-1,西辽河PAHs的浓度比东辽河以及辽河干流中PAHs的浓度要高。在多环芳烃组成上,溶解态和颗粒态样品的PAHs均以低环数(二、三环)为主,且溶解态中低环数PAHs所占比例较颗粒态中所占的比例高。其中,溶解态中二环的PAHs比例最高(平均为68.19%),颗粒态中三环的PAHs比例最高(平均为66.28%)。相对于国内外其他河流,辽河流域的PAHs污染处于较低水平,部分河流受到一定程度的污染。辽河水系中PAHs的来源主要是以石油类和化石类燃料燃烧为主的混合源,这与辽宁复杂的能源结构密切相关。  相似文献   

9.
本文对大连近海海域15个表层沉积物样品中16种多环芳烃(PAHs)污染特征及来源进行研究。结果表明,沉积物中16PAHs总浓度为30.0410-9~89.2410-9,平均值为50.8410-9,其中工业区显著高于城市地区(p0.05),极显著高于农村地区(p0.01)。沉积物中PAHs含量与总有机碳(TOC)含量间存在显著正相关性(p0.05),表明沉积物有机质含量是影响PAHs含量的主要因素。主成分分析得出,大连近海海域PAHs污染源为石油泄漏造成的石油源、生物质及化石燃料燃烧形成的燃烧源和燃油燃烧形成的交通源。  相似文献   

10.
采用固相萃取-高效液相色谱-荧光检测法分析了青岛近岸海水中15种PAHs的质量浓度.结果表明,海水中PAHs的总量变化范围为8.23~272.02 ng.L-1,河口区质量浓度最高,远离城区的清洁区质量浓度最低.就组成特征而言,2~3环PAHs是其主要组分,占总量的质量分数为52.2%~93.8%,4~6环PAHs占总量的质量分数为6.2%~47.8%.表层海水中PAHs总浓度和DOC浓度之间有较好的相关性,相关系数为0.944 3.青岛湾表层海水中PAHs浓度组成相对稳定.利用Fl/(Fl+Py)和An/(An+Ph)分析表层海水中PAHs的来源,结果表明除清洁区表层海水中PAHs主要来源于煤和木材燃烧外,青岛近岸海水中的PAHs主要来源于石油制品和石油燃烧.  相似文献   

11.
通过将比值法、主成分分析和正定矩阵分析法相结合对大气中PAHs的污染源进行了解析,结果表明,煤的燃烧和汽车尾气的排放是PAHs的主要污染源,冬季,煤的燃烧是主要污染源,其贡献率为60.6%,其次为汽车尾气排放(34.4%),其他季节,汽车尾气的排放和燃煤污染是主要的污染源,其贡献率分别为59.3%和17.1%。通过等效毒性当量因子计算得到,哈尔滨大气中BaP当量浓度冬季为7.751 9 ng/m3,其他季节为0.688 6 ng/m3,均符合中国规定的10 ng/m3。  相似文献   

12.
河南省焦作市作为典型的以煤炭为主要能源的中级工业化城市,研究其城市转型过程中大气环境污染现状及污染物来源具有一定的指示意义。通过采集2013-2014年焦作市4个季度82个PM_(2.5)样品,对其中的16种优控的多环芳烃(PAHs)的含量与组成进行了测定与分析,并对多环芳烃进行了源解析。研究结果表明,焦作市大气中PM_(2.5)的浓度范围为51.32~270.12μg/m~3,平均为152.16μg/m~3;PM_(2.5)中总多环芳烃(TPAHs)的浓度范围是7.6~672.5 ng/m~3,平均为119.22 ng/m~3,其浓度随季节变化明显,冬季秋季春季夏季;PAHs中Ba P的平均浓度为11.93 ng/m~3,BaP当量浓度为30.43 ng/m~3,过量致癌风险值(ICR)达到264.74×10~(-5);多环芳烃组成以4~6环PAHs为主,占TPAHs总量的90%以上,浓度最高的是BghiP、BbF和IcdP。应用特征比值法和主成分分析法对PAHs进行了源解析,显示燃煤和机动车排放是2个最主要的排放源。  相似文献   

13.
大气颗粒物中多环芳烃的污染特征及来源识别   总被引:15,自引:3,他引:15  
研究了北京市2000年采暖期和非采暖期2个典型代表月(6月和12月)不同粒径颗粒物的质量浓度特征以及不同粒径颗粒物中ρ(PAHs)分布特征,并同时利用比值法和化学质量平衡(CMB)受体模型对可吸入颗粒物(PM10)中PAHs的来源进行识别和解析.研究结果表明:北京市采暖期ρ(颗粒物)明显高于非采暖期;采暖期和非采暖期不同粒径颗粒物的比例有差别,采暖期、非采暖期ρ(PM10)分别约占ρ(TSP)的0.662和0.734;PAHs具有更明显富集于细颗粒物中的特征;源解析结果表明燃煤污染和机动车污染是PM10中PAHs的最主要来源.   相似文献   

14.
西安市大气降水污染和沉降特征及其来源解析   总被引:1,自引:4,他引:1  
丁铖  于兴娜  侯思宇 《环境科学》2020,41(2):647-655
基于东亚酸沉降监测网(Acid Deposition Monitoring Network in East Asia,EANET)的湿沉降观测数据,分析了2000~2017年西安市大气降水化学特征、沉降特征以及潜在来源.结果表明,2000~2017年西安市降水pH和电导率的变化分别呈上升和下降趋势;大气降水中离子平均浓度大小依次为SO42-> Ca2+> NH4+> NO3-> Na+> Cl-> Mg2+> K+,其中SO42-浓度占总离子的比值由2000年的38. 6%降低到2017年的27. 9%.近年来的SO42-和NO3-的比值表明,西安市大气污染物排放类型有由燃煤型向混合型转变的趋势.近十几年来SO4  相似文献   

15.
上海市郊道路地表径流多环芳烃污染特征对比及源解析   总被引:1,自引:7,他引:1  
随着城市化发展,我国城市地表径流污染问题日益突出,交通道路地表径流多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染受到广泛关注.以上海中心城区(漕宝路)和郊区(嘉金高速)交通道路为研究对象,采集2017~2018年7场降雨地表动态径流水样,分析道路地表径流多环芳烃的质量浓度特征及组成比例,并采用特征比值法和正定矩阵因子法(positive matrix factorization,PMF)进行PAHs源解析,从而明确交通道路地表径流PAHs的污染特征及来源差异.结果表明,郊区嘉金高速Σ16PAHs的几何均值(5 539. 2 ng·L~(-1))高于市区漕宝路(548. 1 ng·L~(-1)) 10倍以上,与嘉金高速货车比例大且清扫频率相对较低有关.两个点位的苯并[a]芘[benzo(a) pyrene,Ba P]均超过国家排放标准,尤其嘉金高速超标21倍.漕宝路和嘉金高速径流PAHs组分比例差异不大,均以4~6环为主,占比约80%.通过特征比值法定性源解析发现,漕宝路PAHs主要来自燃煤源和交通源;嘉金高速PAHs主要来自石油、煤等燃烧源和交通源. PMF定量源解析表明,漕宝路径流PAHs来源以燃气、燃煤源为主,占48. 6%,其次为交通排放源和石油源,分别占29. 8%和21. 7%;嘉金高速道路径流PAHs来源贡献比从大到小依次为交通排放源、燃煤源、石油源以及炼焦源,其贡献率分别为38. 5%、34. 6%、14. 6%和12. 6%.市、郊道路的PAHs来源及贡献率存在显著差异,燃气、燃煤源是市区漕宝路地表径流PAHs主要来源,与其所在徐汇区人口密度大、燃气使用量相对较多有关;交通排放源是郊区嘉金高速地表径流PAHs主要来源,与其客、货车流量相对较大、其排放PAHs远高于轿车有关;另外嘉金高速PAHs来源还存在炼焦源,与青浦区工业煤炭使用量较大有关.  相似文献   

16.
黄河口表层沉积物多环芳烃污染源解析研究   总被引:9,自引:4,他引:9  
利用气相色谱-质谱联用仪对黄河口表层沉积物中25种多环芳烃进行了分析.结果显示:沉积物中w(PAHs)为48.56~277.12 ng/g,平均值为122.92 ng/g,表明PAHs处于较低的污染水平.PAHs组分中2~3环PAHs所占比例最大,其中w(萘)最高,w(菲),w(1-甲基萘)和w(2-甲基萘)也较高.PAHs来源诊断比值〔w(□)/w(亲体PAHs)〕分析表明,石油污染和化石燃料的高温燃烧是黄河口沉积物中PAHs的主要来源;因子分析/多元线性回归分析显示,PAHs主要来源于交通燃油和天然气燃烧排放、石油污染、焦炉燃烧排放三大污染源,其中石油污染贡献最大(占74.5%),而交通燃油和天然气燃烧排放、焦炉燃烧排放所占比例相对较小,分别为12.8%和12.7%.   相似文献   

17.
福建省莆田市作为典型的海滨城市,自2015年以来以O3为首要污染物的天数逐年增加.为了制定科学有效的减排措施,减轻莆田市的O3污染,以2016年莆田市O3污染高发的7—9月为研究时段,通过观测数据分析、空气质量模型敏感性分析和O3来源追踪方法分析了莆田市近地面O3生成控制区,以及O3及其生成前体物NOx与VOCs的区域和行业来源.结果表明:①莆田市西部地区为NOx控制区,而东部沿海地区则为VOCs控制区.②莆田市ρ(NOx)与ρ(VOCs)主要来自本地排放贡献,二者本地排放的贡献率分别为69.4%与64.2%,而本地排放对莆田市ρ(O3)的贡献率仅为21.0%,福建省福州市和泉州市对莆田市ρ(O3)的贡献率之和为37.6%,外来输送贡献率较大的为浙江省,其贡献率为11.6%.莆田市O3的外来输送不仅发生在ρ(O3)较高的时段,在ρ(O3)较低的时段也占了很大的比例.③莆田市工业源对本地排放ρ(O3)贡献率最大,达57%,其次是机动车源.④通过敏感性时间序列分析得出,同时削减10%的NOx和VOCs排放,能使莆田市国控点位平均ρ(O3)峰值下降约5 μg/m3.研究显示,莆田市NOx与VOCs主要来自本地排放,O3受外来输送影响较大,推进本地工业NOx和VOCs污染的治理与加强机动车尾气的污染控制是减轻本地O3污染的有效方法.   相似文献   

18.
在水体环境中应用污染物源解析模型,从源头上实现对污染物的控制对于遏制水质恶化具有重要意义。该文通过对松花江丰水期18个监测断面和平水期16个监测断的16种EPA优先控制的多环芳烃作为目标污染物,应用因子分析法识别水体中多环芳烃的主要来源,结果显示:松花江流域水体有4个主要的多环芳烃污染源,分别为煤及石油的燃烧源、交通污染源、石油污染物和炼焦污染源。丰水期与平水期多环芳烃污染来源基本一致。根据沿江主要工业分布得出:二松吉林段主要来源于吉林石化等大型石化企业和热电厂的石油燃烧和煤燃烧;二松松原段主要来源于当地的油井石油源和热电厂的燃煤;干流哈尔滨段主要来源于当地热电厂的燃烧和石油燃烧;干流佳木斯段主要源于佳木斯市的焦化厂、热电厂的石油源及煤烧。研究结果可为我国松花江流域水环境中多环芳烃的控制和治理提供参考和科学依据。  相似文献   

19.
舟山市臭氧污染分布特征及来源解析   总被引:1,自引:0,他引:1  
臭氧及其前体物在环境空气中传输和反应过程复杂,本研究利用舟山市国控点2014年的监测数据对臭氧污染时空分布开展了统计分析,并利用CMAQ (community multiscale air quality)模型模拟了舟山市2014年臭氧污染形成,选用ISAM(integrated source apportionment method)源追踪算法计算来源贡献率.结果表明,舟山市春秋季节的臭氧浓度相对较高,浓度高值出现在午后13:00~15:00.普陀站的臭氧平均浓度最高而位于中心城区的临城站最低.臭氧总体浓度不高,但易出现单日浓度高值,其中5月臭氧超标率最高.舟山市本地臭氧形成主要受VOCs浓度控制,而源解析结果表明舟山市全年外来源占总贡献的69. 46%.本地源中,工业燃烧源、工艺过程源、道路移动源、非道路移动源的贡献率相差不大,且表现出显著的港口城市特征,船舶源、石化源、储运源分别占总贡献的4. 45%和1. 01%和1. 80%.控制臭氧污染应采取周边区域联防联控的措施,以VOCs排放源为主,不同来源协同调控的措施.  相似文献   

20.
利用污染物及气象观测数据对肇庆市2018年12月17~23日大气污染过程进行了分析,采用了CMAQ-ISAM模型以及混合受体模型对本次大气污染来源进行了解析研究.结果表明,12月19~21日肇庆地区受近地面弱气压影响而形成的较为不利的污染物扩散条件,是肇庆大气污染过程的诱导因素;在本次污染发生前的清洁时段,肇庆污染主要来自于本地及清远,其贡献率分别为19. 2%和10. 7%,而受江西、湖南、湖北以及陕西等地的远距离污染物传输作用影响约为64. 5%;在污染时段,随着地面高气压场南移,肇庆地区受珠三角主要城市和粤东城市的区域传输贡献明显,肇庆、佛山、东莞、广州和惠州贡献率依次为25. 5%、14. 8%、9. 8%、9. 5%和5. 3%,河源、梅州、汕尾、揭阳、汕头和潮州这6个广东省东部城市贡献率共计13. 7%,而受福建、江西以及长江三角洲等地的远距离污染物传输作用影响约为32. 9%,且经过海上通道传输的污染物贡献更为显著.因此,输送到海面上的气溶胶颗粒经吸湿增长后回到陆地,是本次肇庆污染天气的主要成因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号