首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ku SH  Lee SH  Park CB 《Biomaterials》2012,33(26):6098-6104
The interactions between cells and materials play critical roles in the success of new scaffolds for tissue engineering, since chemical and physical properties of biomaterials regulate cell adhesion, proliferation, migration, and differentiation. We have developed nanofibrous substrates that possess both topographical cues and electroactivity. The nanofiber scaffolds were fabricated through the electrospinning of polycaprolactone (PCL, a biodegradable polymer) and polyaniline (PANi, a conducting polymer) blends. We investigated the ways in which those properties influenced myoblast behaviors. Neither nanofiber alignment nor PANi concentration influenced cell growth and proliferation, but cell morphology changed significantly from multipolar to bipolar with the anisotropy of nanofibers. According to our analyses of myosin heavy chain expression, multinucleate myotube formation, and the expression of differentiation-specific genes (myogenin, troponin T, MHC), the differentiation of myoblasts on PCL/PANi nanofibers was strongly dependent on both nanofiber alignment and PANi concentration. Our results suggest that topographical cues and the electroactivity of nanofibers synergistically stimulate muscle cell differentiation to make PCL/PANi nanofibers a suitable scaffold material for skeletal tissue engineering.  相似文献   

2.
Poly(lactic-co-glycolic acid) (PLGA)/collagen nanofibrous scaffolds have been utilized in the tissue engineering field. It has been shown that both fibronectin (FN) and cadherin 11 (CDH) play important roles in the progress of osteogenesis and cell adhesion. The aim of this study was to fabricate recombinant FN/CDHs (rFN/CDHs)-loaded PLGA/collagen nanofibrous scaffolds and evaluate their effects on the adhesion and differentiation of human bone marrow mesenchymal stem cells (hMSCs). PLGA/collagen nanofibers were made by coaxial electrospinning. The morphology and mechanical properties of PLGA/collagen nanofibrous mats were analyzed by scanning electron microscopy and mechanical testing, respectively. The performance of scaffolds was evaluated in terms of the viability, morphology, and osteogenic gene expression levels of hMSCs. rFN/CDHs was successfully incorporated into the PLGA/collagen nanofibers. The release of rFN/CDHs from PLGA nanofibers was investigated by liquid chromatography–mass spectrometry. rFN/CDHs improved the mechanical properties of the PLGA/collagen nanofibers. The controlled release of rFN/CDHs can enhance the proliferation of hMSCs and induce osteogenic gene expression (alkaline phosphatase, RUNX2, and osteocalcin). Our data imply that rFN/CDHs may induce hMSCs differentiation into osteoblasts and PLGA/collagen nanofibers loaded with rFN/CDHs have potential in bone tissue engineering.  相似文献   

3.
Embryonic stem cells represent a potentially unlimited cell source for tissue engineering applications. However, in order to be used for such applications, embryonic stem cells' differentiation must be controlled to only the desired lineages. In this study, we examine the effects of nanofibrous architecture and biochemical cues on the osteogenic differentiation of embryonic stem cells compared to the more traditional architecture without the nanofibrous features in two dimensions (thin matrix or flat films) and three dimensions (scaffolds) in vitro. After three weeks of culture the nanofibrous thin matrices were capable of supporting mRNA expression of osteogenic differentiation markers in embryonic stem cells without osteogenic supplements, while solid films required osteogenic supplements and growth factors to achieve mRNA expression of osteogenic differentiation markers. Nanofibrous scaffolds substantially enhanced mRNA expression of osteogenic differentiation markers compared to solid-walled scaffolds, nanofibrous thin matrices or solid films. After 4 weeks of culture, nanofibrous scaffolds were found to contain 3 times more calcium and stronger osteocalcin stain throughout the scaffolds than the solid-walled scaffolds. Overall, the nanofibrous architecture enhanced the osteogenic differentiation and mineralization of embryonic stem cells compared to the solid-walled architecture in both two and three-dimensional cultures.  相似文献   

4.
J. Wang  X. Yu 《Acta biomaterialia》2010,6(8):3004-3012
In a previous study, a three-dimensional nanofibrous spiral scaffold for bone tissue engineering was developed, which showed enhanced human osteoblast cell attachment, proliferation and differentiation compared with traditional cylinder scaffolds, owing to the incorporation of spiral structures and nanofiber. However, the application of these scaffolds to bone tissue engineering was limited by their weak mechanical strength. This limitation triggered the design for novel structured scaffolds with reinforced physical characteristics. In this study, spiral polycaprolactone (PCL) nanofibrous scaffolds were inserted into poly(lactide-co-glycolide) (PLGA) microsphere sintered tubular scaffolds to form integrated scaffolds to provide mechanical properties and bioactivity appropriate for bone tissue engineering. Four experiment groups were designed: PLGA cylinder scaffold; PLGA tubular scaffold; PLGA tubular scaffold with PCL spiral structured inner core; PLGA tubular scaffold with PCL nanofiber containing spiral structured inner core. The morphology, porosity and mechanical properties of the scaffolds were characterized. Furthermore, human osteoblastic cells were seeded on these scaffolds, and the cell attachment, proliferation, differentiation and mineralized matrix deposition on the scaffolds were evaluated. The integrated scaffolds had Young’s modulus 250–300 MPa, and compressive strength 8–11 MPa under uniaxial compression. With the addition of an inner highly porous insert to the tubular shell, human osteoblast cells seeded on the integrated scaffolds showed slightly higher cell proliferation, 20–25% more alkaline phosphatase expression and twofold higher calcium deposition than those on the cylinder and tubular scaffolds. Furthermore, compared with sintered PLGA cylinder scaffolds, the integrated scaffolds allowed better cellular infiltration Therefore, this design demonstrates great potential for integrated scaffolds in bone tissue engineering applications.  相似文献   

5.
Biodegradable polymers, such as poly(glycolic acid) (PGA), poly(L-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA), were dissolved individually in the proper solvents and then subjected to electrospinning process to make nanofibrous scaffolds. Their surfaces were then chemically modified using oxygen plasma treatment and in situ grafting of hydrophilic acrylic acid (AA). The fiber thickness, pore size and porosity were estimated to 200-800 nm, 2-30 microm and 94-96%, respectively, and these properties were insignificant in the PGA, PLLA and PLGA nanofibrous scaffolds. The ultimate tensile strength of PGA was about 2.5 MPa on average and that of PLGA and PLLA was less than 2 MPa. The elongation-at-break was 100-130% for the three nanofibrous scaffolds. When the surface properties of AA-grafted scaffolds were examined, higher ratios of oxygen to carbon, lower contact angles and the presence of carboxylic (-COOH) groups were identified. The properties were significantly different from those of the unmodified nanofibrous scaffolds. Fibroblasts once seeded on the scaffolds were spreading over large surface area on the AA-grafted surface as compared to the unmodified PGA, PLLA and PLGA nanofibrous scaffolds. Cultured for up to 6 days, the fibroblast proliferation was found to be much better on the surface-modified nanofibrous scaffolds. The present study showed that, with the use of plasma treatment and AA grafting, the hydrophilic functional groups could be successfully adapted on the surface of electrospun nanofibrous scaffolds. Those surface-modified scaffolds made significant improvement on cell attachment and proliferation in vitro.  相似文献   

6.
Earlier studies reported that neural stem (NS) cells injected into blastocysts appeared to be pluripotent, differentiating into cells of all three germ layers. In this study, we followed in vitro green fluorescent protein (GFP)-labeled NS and embryonic stem (ES) cells injected into blastocysts. Forty-eight hours after injection, significantly fewer blastocysts contained GFP-NS cells than GFP-ES cells. By 96 hours, very few GFP-NS cells remained in blastocysts compared with ES cells. Moreover, 48 hours after injection, GFP-NS cells in blastocysts extended long cellular processes, ceased expressing the NS cell marker nestin, and instead expressed the astrocytic marker glial fibrillary acidic protein. GFP-ES cells in blastocysts remained morphologically undifferentiated, continuing to express the pluripotent marker stage-specific embryonic antigen-1. Selecting cells from the NS cell population that preferentially formed neurospheres for injection into blastocysts resulted in identical results. Consistent with this in vitro behavior, none of almost 80 mice resulting from NS cell-injected blastocysts replaced into recipient mothers were chimeric. These results strongly support the idea that NS cells cannot participate in chimera formation because of their rapid differentiation into glia-like cells. Thus, these results raise doubts concerning the pluripotency properties of NS cells.  相似文献   

7.
Bone marrow Mesenchymal stem cells capable of differentiating into neuronal cells on engineered nanofibrous scaffolds have great potential for bionanomaterial–cell transplantation therapy of neurodegenerative diseases and injuries of the nervous system. MSCs have been the highlight of many tissue engineering studies mainly because of their multipotential properties. We investigated the potential of human bone marrow derived Mesenchymal stem cells (MSCs) for neuronal differentiation in vitro on poly(l-lactic acid)-co-poly-(3-caprolactone)/Collagen (PLCL/Coll) nanofibrous scaffolds. PLCL and PLCL/Coll nanofibrous scaffolds were fabricated by electrospinning process and their chemical and mechanical characterizations were carried out using SEM, contact angle, FTIR, and tensile instrument. The differentiation of MSCs was carried out using neuronal inducing factors including β-mercaptoethanol, epidermal growth factor, nerve growth factor and brain derived growth factor in DMEM/F12 media. The proliferations of MSCs evaluated by MTS assay showed that the cells grown on PLCL/Coll nanofibrous scaffolds were comparatively higher (80%) than those on PLCL. Scanning electron microscopy results showed that MSCs differentiated on PLCL/Coll nanofibrous scaffolds showed neuronal morphology, with multipolar elongations and expressed neurofilament and nestin protein by immuno-fluorescent microscopy. Our studies on the differentiation of MSCs to neuronal cells on nanofibrous scaffolds suggest their potential application towards nerve regeneration.  相似文献   

8.
Bone marrow (BM) mesenchymal stem cells (MSC) capable of differentiating along the epidermal lineage on engineered nanofibrous scaffolds have great potential for bionanomaterial-cell transplantation therapy of skin wounds. MSC have been the focus of many tissue engineering studies, mainly because of their multipotential properties. We investigated the potential of human BM-derived MSC for epidermal cell differentiation in vitro on electrospun collagen/poly(l-lactic acid)-co-poly(3-caprolactone) (Coll/PLLCL) nanofibrous scaffolds. PLLCL and Coll/PLLCL nanofibrous scaffolds were fabricated by an electrospinning process and their chemical and mechanical characterization carried out by scanning electron microscopy (SEM), water contact angle determination, Fourier transform infrared spectroscopy, and tensile testing. The differentiation of MSC was carried out using epidermis inducing factors, including epidermal growth factor (EGF) and 1,25-dihydroxyvitamin D(3), in culture medium. The proliferation of MSC evaluated by cell proliferation assay showed that the number of cells grown on Coll/PLLCL nanofibrous scaffolds was significantly higher than those on PLLCL scaffolds. The SEM results showed that MSC differentiated on Coll/PLLCL nanofibrous scaffolds showed a round keratinocyte morphology and expressed keratin 10, filaggrin and partial involucrin protein by immunofluorescent microscopic studies. The interaction of MSC and nanofibers was studied and we concluded that the electrospun Coll/PLLCL nanofibers could mimic the native skin extracellular matrix environment and are promising substrates for advanced skin tissue engineering. Our studies on the differentiation of MSC along the epidermal lineage on nanofibrous scaffolds suggest their potential application in skin regeneration without regional differentiation.  相似文献   

9.
Bone marrow stromal cells (BMSCs) have been shown to proliferate and produce matrix when seeded onto braided poly(L-lactide/glycolide) acid (PLGA) scaffolds. Mechanical stimulation may be applied to stimulate tissue formation during ligament tissue engineering. This study describes for the first time the effect of constant load on BMSCs seeded onto a braided PLGA scaffold. The seeded scaffolds were subjected to four different loading regimes: Scaffolds were unloaded, loaded during seeding, immediately after seeding, or 2 days after seeding. During the first 5 days, changing the mechanical environment seemed to inhibit proliferation, because cells on scaffolds loaded immediately after seeding or after a 2-day delay, contained fewer cells than on unloaded scaffolds or scaffolds loaded during seeding (p<0.01 for scaffolds loaded after 2 days). During this period, differentiation increased with the period of load applied. After day 5, differences in cell content and collagen production leveled off. After day 11, cell number decreased, whereas collagen production continued to increase. Cell number and differentiation at day 23 were independent of the timing of the mechanical stimulation applied. In conclusion, static load applied to BMSCs cultured on PLGA scaffolds allows for proliferation and differentiation, with loading during seeding yielding the most rapid response. Future research should be aimed at elucidating the biomechanical and biochemical characteristics of tissue formed by BMSCs on PLGA under mechanical stimulation.  相似文献   

10.
Engineering three-dimensional pulmonary tissue constructs   总被引:2,自引:0,他引:2  
In this paper, we report on engineering 3-D pulmonary tissue constructs in vitro. Primary isolates of murine embryonic day 18 fetal pulmonary cells (FPC) were comprised of a mixed population of epithelial, mesenchymal, and endothelial cells as assessed by immunohistochemistry and RT-PCR of 2-D cultures. The alveolar type II (AE2) cell phenotype in 2-D and 3-D cultures was confirmed by detection of SpC gene expression and presence of the gene product prosurfactant protein C. Three-dimensional constructs of FPC were generated utilizing Matrigel hydrogel and synthetic polymer scaffolds of poly-lactic-co-glycolic acid (PLGA) and poly-L-lactic-acid (PLLA) fabricated into porous foams and nanofibrous matrices, respectively. Three-dimensional Matrigel constructs contained alveolar forming units (AFU) comprised of cells displaying AE2 cellular ultrastructure while expressing the SpC gene and gene product. The addition of tissue-specific growth factors induced formation of branching, sacculated epithelial structures reminiscent of the distal lung architecture. Importantly, 3-D culture was necessary for inducing expression of the morphogenesis-associated distal epithelial gene fibroblast growth factor receptor 2 (FGFr2). PLGA foams and PLLA nanofiber scaffolds facilitated ingrowth of FPC, as evidenced by histology. However, these matrices did not support the survival of distal lung epithelial cells, despite the presence of tissue-specific growth factors. Our results may provide the first step on the long road toward engineering distal pulmonary tissue for augmenting and/or replacing dysfunctional native lung in diseases, such as neonatal pulmonary hypoplasia.  相似文献   

11.
Peng F  Yu X  Wei M 《Acta biomaterialia》2011,7(6):2585-2592
Highly porous hydroxyapatite (HA)/poly(L-lactide) (PLLA) nanofibrous scaffolds were prepared by incorporating needle-shaped nano- or micro-sized HA particles into PLLA nanofibers using electrospinning. The scaffolds had random or aligned fibrous assemblies and both types of HA particles were perfectly oriented along the fiber long axes. The biocompatibility and cell signaling properties of these scaffolds were evaluated by in vitro culture of rat osteosarcoma ROS17/2.8 cells on the scaffold surface. Cell morphology, viability and alkaline phosphatase (ALP) activity on each scaffold were examined at different time points. The HA/PLLA scaffolds exhibited higher cell viability and ALP activity than a pure PLLA scaffold. In addition, micro-sized HA particles supported cell proliferation and differentiation better than nano-sized ones in random scaffolds through a 10 day culture period and in aligned scaffolds at an early culture stage. The fibrous assembly of the scaffold had a pronounced impact on the morphology of the cells in direct contact with the scaffold surface, but not on cell proliferation and differentiation. Thus, HA/PLLA nanofibrous scaffolds could be good candidates for bone tissue engineering.  相似文献   

12.
The aim of this study was to determine the ability of various poly(alpha-hydroxy esters) to support the in vitro propagation of murine embryonic stem (ES) cells in an undifferentiated state. To this end, ES cell colonization, growth and Oct-4 immunoreactivity following a 48 h culture period upon poly((D,L)-lactide), poly((L)-lactide), poly(glycolide) and poly((D,L)-lactide-co-glycolide) (PLGA) were assessed. By the analysis of live and dead cell number indices and Oct-4 immunoreactivity, ES cell colonization rate during a 48 h culture period was found to be significantly greater on PLGA compared to all the other unmodified poly(alpha-hydroxy esters) tested. Surface treatment of all polymers with 0.1m potassium hydroxide revealed a significant increase in ES cell live numbers when compared to all unmodified polymers, thus revealing a correlation between polymer content, hydrophilicity and colonization rate. These data suggest that surface treated poly(alpha-hydroxy esters) may be employed for ES cell scale up procedures and in tissue engineering applications requiring the colonization of scaffolds by ES cells in an undifferentiated state. According to such applications, once the designated scaffold has been colonized, ES cell directed differentiation into the desired and fully differentiated, functional adult tissue may then be effected.  相似文献   

13.
Sarkar S  Lee GY  Wong JY  Desai TA 《Biomaterials》2006,27(27):4775-4782
The fabrication of functional small diameter blood vessel analogs has implications in vascular disease treatment. Current 3D models of the medial vessel layer lack micron-scale topographical cues that have shown promise in vitro by recapitulating native vascular smooth muscle cell (VSMC) behavior. A major obstacle to fabricating 3D scaffolds is maintaining adequate nutrient diffusion to cells. We have developed and characterized porous micro-patterned poly-caprolactone (PCL) scaffolds using a novel technique that integrates soft lithography, melt molding and particulate leaching of polylactic-co-glycolic acid (PLGA) micro/nanoparticles. Scanning electron microscopy showed that PLGA-leached scaffolds have circular pores significantly smaller than the size scale of the grooved surface pattern (48 microm grooves; 5 microm deep; 12 microm spacing). Diffusion of media through PLGA-leached scaffolds was six-fold greater than through non-porous scaffolds, indicating successful introduction of through-pores into PCL by the PLGA leaching technique. VSMC alignment on micro-patterned PLGA-leached scaffolds was similar to that on micro-patterned non-porous scaffolds, indicating no loss in cellular organization on PLGA-leached scaffolds. In contrast, cells seeded on micro-patterned sodium bicarbonate-leached scaffolds remained un-aligned. The ability to micro-pattern cells on porous scaffolds may facilitate the transfer of micro-technology from simple 2D substrates to complex 3D architectures, allowing for tight control over cellular organization in fabricated tissues.  相似文献   

14.
三种高分子支架对骨髓基质细胞生长影响的研究   总被引:4,自引:0,他引:4  
研究高分子复合支架聚乳酸均聚物(PLA)、聚乳酸/聚乙二醇共聚物(PLA-PEG)和聚乳酸/聚乙醇酸共聚物(PLGA)对骨髓基质细胞(M SC)黏附、增殖和分化的影响。分离、纯化兔骨髓基质细胞,分别和3种支架材料共培养。在不同时间段,应用细胞计数,碱性磷酸酶(ALP)定量分析,四环素荧光染色,扫描电镜,RT-PCR的方法,观察细胞在3种材料上生长,黏附和矿化沉积情况。结果表明细胞在3种支架材料上生长良好,PLGA上细胞生长的数量最多,其次是PLA-PEG、PLA,呈时间依赖性增加。3种材料上的细胞均表达ALP活性,PLA-PEG和PLGA组的ALP活性无差异,但显著高于PLA组,差异有显著性。RT-PCR反应可检测到骨钙素和纤维I型胶原在mRNA水平的表达。扫描电镜见细胞最初呈球形附着于材料上,7 d后细胞数量增加并分泌细胞外基质。两周后可见钙化结节形成,四环素荧光呈黄绿色染色。结果提示M SC细胞能较好的黏附于3种聚合物支架上,生长良好,并表达一定的成骨潜能,但PLA共聚物PLA-PEG和PLGA优于PLA均聚物,有望成为较好的构建组织工程骨的支架。  相似文献   

15.
Jeong SI  Kim SY  Cho SK  Chong MS  Kim KS  Kim H  Lee SB  Lee YM 《Biomaterials》2007,28(6):1115-1122
Novel tubular scaffolds of marine source collagen and PLGA fibers were fabricated by freeze drying and electrospinning processes for vascular grafts. The hybrid scaffolds, composed of a porous collagen matrix and a fibrous PLGA layer, had an average pore size of 150+/-50 microm. The electrospun fibrous PLGA layer on the surface of a porous tubular collagen scaffold improved the mechanical strength of the collagen scaffolds in both the dry and wet states. Smooth muscle cells (SMCs)- and endothelial cells (ECs)-cultured collagen/PLGA scaffolds exhibited mechanical properties similar to collagen/PLGA scaffolds unseeded with cells, even after culturing for 23 days. The effect of a mechanical stimulation on the proliferation and phenotype of SMCs and ECs, cultured on collagen/PLGA scaffolds, was evaluated. The pulsatile perfusion system enhanced the SMCs and ECs proliferation. In addition, a significant cell alignment in a direction radial to the distending direction was observed in tissues exposed to radial distention, which is similar to the phenomenon of native vessel tissues in vivo. On the other hand, cells in tissues engineered in the static condition were randomly aligned. Immunochemical analyses showed that the expressions of SM alpha-actin, SM myosin heavy chain, EC von Willebrand factor, and EC nitric oxide were upregulated in tissues engineered under a mechano-active condition, compared to vessel tissues engineered in the static condition. These results indicated that the co-culturing of SMCs and ECs, using collagen/PLGA hybrid scaffolds under a pulsatile perfusion system, leads to the enhancement of vascular EC development, as well as the retention of the differentiated cell phenotype.  相似文献   

16.
Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds   总被引:10,自引:0,他引:10  
Park GE  Pattison MA  Park K  Webster TJ 《Biomaterials》2005,26(16):3075-3082
Compared to conventional poly(lactic-co-glycolic acid) (PLGA), previous studies have shown that NaOH-treated PLGA two-dimensional substrates enhanced functions of osteoblasts (bone-forming cells), vascular and bladder smooth muscle cells, and chondrocytes (cartilage-synthesizing cells). In this same spirit, the purpose of this in vitro study was to fabricate three-dimensional NaOH-treated PLGA scaffolds and determine their efficacy toward articular cartilage applications. To improve functions of chondrocytes including their adhesion, growth, differentiation, and extracellular matrix synthesis, PLGA scaffolds were modified via chemical etching techniques using 1N NaOH for 10 min. Results demonstrated that NaOH-treated PLGA three-dimensional scaffolds enhanced chondrocyte functions compared to non-treated scaffolds. Specifically, chondrocyte numbers, total intracellular protein content, and the amount of extracellular matrix components (such as glycosaminoglycans and collagens) were significantly greater on NaOH-treated than on non-treated PLGA scaffolds. Underlying material properties that may have enhanced chondrocyte functions include a more hydrophilic surface (due to hydrolytic degradation of PLGA by NaOH), increased surface area, altered porosity (both percent and diameter of individual pores), and a greater degree of nanometer roughness. For these reasons, this study adds a novel tissue-engineering scaffold to the cartilage biomaterial community: NaOH-treated PLGA. Clearly, such modifications to PLGA may ultimately enhance the efficacy of tissue-engineering scaffolds for articular cartilage repair.  相似文献   

17.
Directional growth and differentiation of adult rat hippocampal progenitor cells (AHPCs) were investigated on micropatterned polymer substrates in vitro. Astrocytes or AHPCs cultured on micropatterned polystyrene substrates chemically modified with laminin exhibited over 75% alignment in the groove direction. AHPCs co-cultured with astrocytes preferentially acquired neuronal morphology, with nearly double the percentage of cells expressing class III beta-tubulin on the micropatterned half of the substrate, as opposed to the planar half of the substrate, or compared to those growing in the absence of astrocytes. This indicates that substrate three-dimensional topography, in synergy with chemical (laminin) and biological (astrocytes) guidance cues, facilitates neuronal differentiation of the AHPCs. Through multi-dimensional cell-cell interactions, this environment provides spatial control selectively enhancing neuronal differentiation and neurite alignment on topographically different regions of the same substrate. Integrating these cues is important in understanding and controlling neural stem cell differentiation and designing scaffolds for guided nerve regeneration.  相似文献   

18.
Successful tissue engineering requires optimization of scaffold stiffness for a given application and cell type. Here, we investigated the effect of scaffold stiffness on myoblast cells, demonstrating the ability of cells to affect and to sense their mechanical microenvironment. Myoblasts were cultured on composite three-dimensional poly-lactic acid (PLLA)/poly-lactic co glycolic acid (PLGA) porous scaffolds of varied elasticity. The elasticity was controlled by changing the ratio of PLLA versus PLGA in the scaffolds. Cell organization, myotube formation, and cell viability were affected by scaffold stiffness. PLLA-containing scaffolds (100% to 25% PLLA) provided stiffness that supported myotube formation, while neat PLGA scaffold failed to support myotube formation and cell viability. Furthermore, scaffold stiffness correlated to its size/area reduction upon culturing experiments, suggesting different shrinkage degree by cell forces. Inhibition of scaffold shrinking by affixing device resulted in spacious cell organization with normal cell morphology. This may suggest that scaffold shrinkage led to cellular degeneration and shape deformation. Our results indicate that compliant scaffolds are insufficient to withstand cell forces. On the other hand, excessively firm scaffold could not lead to parallel oriented myotube organization. Hence, optimal scaffold stiffness can be tailored by PLLA/PLGA blending to direct specific stages of myoblast differentiation and organization.  相似文献   

19.
Guobao Wei  Peter X. Ma 《Biomaterials》2009,30(32):6426-6434
An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.  相似文献   

20.
Nerve tissue engineering is one of the most promising methods to restore nerve systems in human health care. Scaffold design has pivotal role in nerve tissue engineering. Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue-engineering applications. Random and aligned PCL/gelatin biocomposite scaffolds were fabricated by varying the ratios of PCL and gelatin concentrations. Chemical and mechanical properties of PCL/gelatin nanofibrous scaffolds were measured by FTIR, porometry, contact angle and tensile measurements, while the in vitro biodegradability of the different nanofibrous scaffolds were evaluated too. PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (C17.2 cells). MTS assay and SEM results showed that the biocomposite of PCL/gelatin 70:30 nanofibrous scaffolds enhanced the nerve differentiation and proliferation compared to PCL nanofibrous scaffolds and acted as a positive cue to support neurite outgrowth. It was found that the direction of nerve cell elongation and neurite outgrowth on aligned nanofibrous scaffolds is parallel to the direction of fibers. PCL/gelatin 70:30 nanofibrous scaffolds proved to be a promising biomaterial suitable for nerve regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号