首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, a coupled model based on finite element method (FEM), boundary element method (BEM) and scaled boundary FEM (SBFEM) (also referred to as the consistent infinitesimal finite element cell method) for dynamic response of 2D structures resting on layered soil media is presented. The SBFEM proposed by Wolf and Song (Finite‐element Modelling of Unbounded Media. Wiley: England, 1996) and BEM are used for modelling the dynamic response of the unbounded media (far‐field). The standard FEM is used for modelling the finite region (near‐field) and the structure. In SBFEM, which is a semi‐analytical technique, the radiation condition at infinity is satisfied exactly without requiring the fundamental solution. This method, also eliminates the need for the discretization of interfaces between different layers. In both SBFEM and BEM, the spatial dimension is decreased by one. The objective of the development of this coupled model is to combine advantages of above‐mentioned three numerical models to solve various soil–structure interaction (SSI) problems efficiently and effectively. These three methods are coupled (FE–BE–SBFEM) via substructuring method, and a computer programme is developed for the harmonic analyses of SSI systems. The coupled model is established in such a way that, depending upon the problem and far‐field properties, one can choose BEM and/or SBFEM in modelling related far‐field region(s). Thus, BEM and/or SBFEM can be used efficiently in modelling the far‐field. The proposed model is applied to investigate dynamic response of rigid and elastic structures resting on layered soil media. To assess the proposed SSI model, several problems existing in the literature are chosen and analysed. The results of the proposed model agree with the results presented in the literature for the chosen problems. The advantages of the model are demonstrated through these comparisons. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The numerical modelling of interacting acoustic media by boundary element method–finite element method (BEM–FEM) coupling procedures is discussed here, taking into account time‐domain approaches. In this study, the global model is divided into different sub‐domains and each sub‐domain is analysed independently (considering BEM or FEM discretizations): the interaction between the different sub‐domains of the global model is accomplished by interface procedures. Numerical formulations based on FEM explicit and implicit time‐marching schemes are discussed, resulting in direct and optimized iterative BEM–FEM coupling techniques. A multi‐level time‐step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time‐marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating the potentialities and robustness of the proposed methodologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is devoted to the analysis of elastodynamic problems in 3D‐layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half‐space or full‐space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D‐layered medium. In this paper, a modified SBFEM for the analysis of 3D‐layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis. Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The study of dynamic soil-structure interaction is significant to civil engineering applications, such as machine foundation vibration, traffic-induced vibration, and seismic dynamic response. The scaled boundary finite element method (SBFEM) is a semi-analytical algorithm, which is used to solve the dynamic response of a three-dimensional infinite soil. It can automatically satisfy the radiation boundary condition at infinity. Based on the dynamic stiffness matrix equation obtained by the modified SBFEM, a continued fraction algorithm is proposed to solve the dynamic stiffness matrix of layered soil in the frequency-domain. Then, the SBFEM was coupled with the finite element method (FEM) at the interface to solve the dynamic stiffness matrices of the rigid surface/buried foundation. Finally, the mixed-variable algorithm was used to solve the three-dimensional transient dynamic response of the foundation in the time domain. Numerical examples were performed to verify the accuracy of the proposed algorithm in solving the dynamic stiffness matrix of the infinite domain in the frequency domain and the dynamic transient displacement response of the foundation in the time domain. Compared with the previous numerical integration technique, the dynamic stiffness matrix in the frequency domain calculated by using the proposed algorithm has higher accuracy and higher efficiency.  相似文献   

5.
利用有限元分析软件ANSYS和边界元分析软件SYSNOISE对卡车驾驶室的振动与内部声辐射做了数值计算分析研究.应用ANSYS软件建立了驾驶室有限元分析模型,说明了振动频响分析方法,动力学计算结果与声学边界元模型耦合的具体步骤.介绍了如何应用SYSNOISE软件建立驾驶室三维边界元声学分析模型,并采用直接边界元法,对驾驶室振动声学特性进行了计算分析.  相似文献   

6.
We propose a coupled boundary element method (BEM) and a finite element method (FEM) for modelling localized damage growth in structures. BEM offers the flexibility of modelling large domains efficiently, while the non‐linear damage growth is accurately accounted by a local FEM mesh. An integral‐type nonlocal continuum damage mechanics with adapting FEM mesh is used to model multiple damage zones and follow their propagation in the structure. Strong form coupling, BEM hosted, is achieved using Lagrange multipliers. Because the non‐linearity is isolated in the FEM part of the system of equations, the system size is reduced using Schur complement approach, then the solution is obtained by a monolithic Newton method that is used to solve both domains simultaneously. The coupled BEM/FEM approach is verified by a set of convergence studies, where the reference solution is obtained by a fine FEM. In addition, the method is applied to multiple fractures growth benchmark problems and shows good agreement with the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A two-step method, coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM), is developed in this paper for modelling cohesive crack growth in quasi-brittle normal-sized structures such as concrete beams. In the first step, the crack trajectory is fully automatically predicted by a recently-developed simple remeshing procedure using the SBFEM based on the linear elastic fracture mechanics theory. In the second step, interfacial finite elements with tension-softening constitutive laws are inserted into the crack path to model gradual energy dissipation in the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the proposed method. The numerical results demonstrate that this two-step SBFEM-FEM coupled method can predict both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for crack growth problems with strong snap-back phenomenon. The effects of the tensile strength, the mode-I and mode-II fracture energies on the predicted load-displacement relations are also discussed.  相似文献   

8.
比例边界有限元法作为一种高精度的半解析数值求解方法,特别适合于求解无限域与应力奇异性等问题,多边形比例边界单元在模拟裂纹扩展过程、处理局部网格重剖分等方面相较于有限单元法具有明显优势。目前,比例边界有限元法更多关注的是线弹性问题的求解,而非线性比例边界单元的研究则处于起步阶段。该文将高效的隔离非线性有限元法用于比例边界单元的非线性分析,提出了一种高效的隔离非线性比例边界有限元法。该方法认为每个边界线单元覆盖的区域为相互独立的扇形子单元,其形函数以及应变-位移矩阵可通过半解析的弹性解获得;每个扇形区的非线性应变场通过设置非线性应变插值点来表达,引入非线性本构关系即可实现多边形比例边界单元高效非线性分析。多边形比例边界单元的刚度通过集成每个扇形子单元的刚度获取,扇形子单元的刚度可采用高斯积分方案进行求解,其精度保持不变。由于引入了较多的非线性应变插值点,舒尔补矩阵维数较大,该文采用Woodbury近似法对隔离非线性比例边界单元的控制方程进行求解。该方法对大规模非线性问题的计算具有较高的计算效率,数值算例验证了算法的正确性以及高效性,将该方法进行推广,对实际工程分析具有重要意义。  相似文献   

9.
A highly efficient novel Finite Element Boundary Element Method (FEBEM) is proposed for the elasto‐viscoplastic plane‐strain analysis of displacements and stresses in infinite solids. The proposed method takes advantage of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) to achieve higher efficiency and accuracy by using the concept of elastic supports to simulate the effects of unbounded solid mass surrounding the region of interest. The BEM is used to compute the stiffnesses of elastic supports and to estimate the location of the truncation boundary for the finite element model. As compared to the conventional coupled FEBEM, the proposed method has three main computational advantages. Firstly, the symmetrical and highly banded form of the standard finite element stiffness matrix is not disturbed. Secondly, the proposed technique may be implemented simply by using standard codes for elasto‐viscoplastic finite element analysis and elastic boundary element analysis. Thirdly, the yielded zone is approximately located in advance by using the BEM and hence, an unnecessarily large extent of the domain does not have to be discretized for the finite element modelling. The efficiency and accuracy of the proposed method are demonstrated by computing elastic and elasto‐plastic displacements and stresses around ‘deep’ underground openings in rock mass subject to hydrostatic and non‐hydrostatic in situ stresses. Results obtained by the proposed method are compared with ‘exact’ solutions and with those obtained by using a BEM and a coupled FEBEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an extension of the recently-developed finite element–scaled boundary finite element (FEM–SBFEM) coupled method to model multiple crack propagation in concrete. The concrete bulk and fracture process zones are modelled using SBFEM and nonlinear cohesive interface finite elements (CIEs), respectively. The CIEs are automatically inserted into the SBFEM mesh as the cracks propagate. The algorithm previously devised for single crack propagation is augmented to model problems with multiple cracks and to allow cracks to initiate in an un-cracked SBFEM mesh. It also addresses crack propagation from one subdomain into another, as a result of partitioning a coarse SBFEM mesh, required for some mixed–mode problems. Each crack in the SBFEM mesh propagates when the sign of the Mode-I stress intensity factor at the crack tip turns positive from negative. Its propagation angle is determined using linear elastic fracture mechanics criteria. Three concrete beams involving multiple crack propagation are modelled. The predicted crack propagation patterns and load–displacement curves are in good agreement with data reported in literature.  相似文献   

11.
The investigation of coupled fluid-structure systems, subjected to dynamic loads, calls for the use of discrete techniques such as the finite element method (FEM) and the boundary element method (BEM). This paper reports on the development of a FEM-BEM coupling procedure, where finite elements are used to model the linear elastic structure, while the adjacent fluid is represented by boundary elements. The new approach is formulated entirely in the time domain to be extensible to non-linear problems. Various numerical calculations are presented which clearly demonstrate the applicability and the merits of the hybrid method. The obtained results are in excellent agreement with solutions stemming from a boundary element analysis which uses subdomain techniques.  相似文献   

12.
This study presents a novel application of the scaled boundary finite element method (SBFEM) to model dynamic crack propagation problems. Accurate dynamic stress intensity factors are extracted directly from the semi‐analytical solutions of SBFEM. They are then used in the dynamic fracture criteria to determine the crack‐tip position, velocity and propagation direction. A simple, yet flexible remeshing algorithm is used to accommodate crack propagation. Three dynamic crack propagation problems that include mode‐I and mix‐mode fracture are modelled. The results show good agreement with experimental and numerical results available in the literature. It is found that the developed method offers some advantages over conventional FEM in terms of accuracy, efficiency and ease of implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A coupled finite element–boundary element analysis method for the solution of transient two‐dimensional heat conduction equations involving dissimilar materials and geometric discontinuities is developed. Along the interfaces between different material regions of the domain, temperature continuity and energy balance are enforced directly. Also, a special algorithm is implemented in the boundary element method (BEM) to treat the existence of corners of arbitrary angles along the boundary of the domain. Unknown interface fluxes are expressed in terms of unknown interface temperatures by using the boundary element method for each material region of the domain. Energy balance and temperature continuity are used for the solution of unknown interface temperatures leading to a complete set of boundary conditions in each region, thus allowing the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, fluxes from specific BEM regions are expressed in terms of common boundary (interface) temperatures, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of finite element method (FEM) regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Dynamic soil–structure interaction is concerned with the study of structures supported on flexible soils and subjected to dynamic actions. Methods combining the finite element method (FEM) and the boundary element method (BEM) are well suited to address dynamic soil–structure interaction problems. Hence, FEM–BEM models have been widely used. However, non-linear contact conditions and non-linear behavior of the structures have not usually been considered in the analyses. This paper presents a 3D non-linear time domain FEM–BEM numerical model designed to address soil–structure interaction problems. The BEM formulation, based on element subdivision and the constant velocity approach, was improved by using interpolation matrices. The FEM approach was based on implicit Green's functions and non-linear contact was considered at the FEM–BEM interface. Two engineering problems were studied with the proposed methodology: the propagation of waves in an elastic foundation and the dynamic response of a structure to an incident wave field.  相似文献   

16.
李上明 《工程力学》2013,30(2):313-317
针对坝体在水平向激励下的瞬态耦合问题和基于比例边界有限元法,推导了等横截面半无限水库的动态刚度矩阵,其值用贝赛尔函数计算。基于该动态刚度矩阵,建立了有限元法与比例边界有限元法的耦合方程,分析了水平向激励下任意几何形状的半无限水库的瞬态响应。其中,半无限水库分解成用有限元离散的任意几何形状的近场域和用比例边界有限元法模拟的远场域即等横截面半无限水库。通过比较动态刚度矩阵和动态质量矩阵模拟等横截面半无限水库的计算效率,发现它们计算精度相同,但动态刚度矩阵效率更高。数值算例表明了所发展的动态刚度矩阵与其耦合方程的正确性。  相似文献   

17.
This paper describes a combined boundary element and finite element model for the solution of velocity–vorticity formulation of the Navier–Stokes equations in three dimensions. In the velocity–vorticity formulation of the Navier–Stokes equations, the Poisson type velocity equations are solved using the boundary element method (BEM) and the vorticity transport equations are solved using the finite element method (FEM) and both are combined to form an iterative scheme. The vorticity boundary conditions for the solution of vorticity transport equations are exactly obtained directly from the BEM solution of the velocity Poisson equations. Here the results of medium Reynolds number of up to 1000, in a typical cubic cavity flow are presented and compared with other numerical models. The combined BEM–FEM model are generally in fairly close agreement with the results of other numerical models, even for a coarse mesh.  相似文献   

18.
A coupled BEM–FEM methodology is presented for 3D wave propagation and soil–structure interaction analysis in the direct time domain. The employed boundary element method (BEM) uses a new generation of the Stokes fundamental solutions that utilize the B-Spline family of polynomials. A standard finite element methodology for dynamic analysis along with direct integration in time is coupled to the BEM through a staggered solution approach. Each method provides initial conditions to the other at the beginning of each time step. Formulation and computational aspects of the proposed coupling scheme are discussed. A number of numerical examples are presented for the validation and demonstration of the general nature of the proposed methodology.  相似文献   

19.
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. In this paper, the SBFEM is firstly extended to solve electrostatic problems. Two new SBFE coordination systems are introduced. Based on Laplace equation of electrostatic field, the derivations (based on a new variational principle formulation) and solutions of SBFEM equations for both bounded domain and unbounded domain problems are expressed in details, the solution for the inclusion of prescribed potential along the side-faces of bounded domain is also presented in details, then the total charges on the side-faces can be semi-analytically solved, and a particular solution for the potential field in unbounded domain satisfying the constant external field is solved. The accuracy and efficiency of the method are illustrated by numerical examples with complicated field domains, potential singularities, inhomogeneous media and open boundaries. In comparison with analytic solution method and other numerical methods, the results show that the present method has strong ability to resolve singularity problems analytically by choosing the scaling centre at the singular point, has the inherent advantage of solving the open boundary problems without truncation boundary condition, has efficient application to the problems with inhomogeneous media by placing the scaling centre in the bi-material interfaces, and produces more accurate solution than conventional numerical methods with far less number of degrees of freedom. The method in electromagnetic field calculation can have broad application prospects.  相似文献   

20.
基于比例边界有限元法(SBFEM)半离散思想和Higdon透射微分算子提出了一种用于模拟二维层状介质标量波传播的高效离散高阶Higdon-like透射边界。对无限介质边界进行迦辽金有限元离散后,描述标量波的偏微分方程转换为局部坐标系下半离散矩阵方程组;然后使用高阶Higdon透射算子和辅助变量,在时域内得到了一个阶数不超过2阶的离散高阶透射边界。透射边界是由一组常微分方程构成,可以采用通常的时步积分方法求解,它在截断边界上非局部,在时间域局部。算例表明:该文提出的透射边界的计算精度可以随着辅助变量的增加而提高,但计算量却呈线性化增加,因而计算效率较全局方法有了显著提高。另外,由于该文的边界条件是直接建立在离散节点上的,所以它很方便与近场有限单元法耦合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号