首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

2.
Anatase and rutile TiO2 were used for preparation of the TiO2 supported Pd and Pd–Ag catalysts for selective hydrogenation of acetylene. It was found that Pd/TiO2-anatase exhibited higher acetylene conversion and ethylene selectivity than rutile TiO2 supported ones. However, addition of Ag to Pd/TiO2-anatase catalyst resulted in lower ethylene selectivity while that of Pd/TiO2-rutile increased. It is suggested that Ag addition suppressed the beneficial effect of the Ti3+ sites presented on the anatase TiO2 during selective acetylene hydrogenation whereas without Ti3+, Ag promoted ethylene selectivity by blocking sites for over-hydrogenation of ethylene to ethane.  相似文献   

3.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

4.
Nanorods TiO2, Fe-TiO2 (3 and 2 at.% Fe), V-TiO2 (5 at.% V) were prepared by a low temperature method and characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and BTE surface area analysis. The as-prepared samples were evaluated as catalysts for photodegradation of Congo red aqueous solution under the sunlight. Nanorods Fe-doped TiO2 shows higher adsorption and also higher photocatalytic degradation of Congo red solution compared to pure nanorods TiO2 rutile. A higher activity is obtained when the amount of doped Fe is 2 at.%, compared to 3 at.%. However, nanorods V-TiO2 does not show neither adsorption nor photodegradation activity of Congo red solution.  相似文献   

5.
This study focuses on the effects of powder size and Ni–Al bonding layer on the electrochemical behaviour of plasma-sprayed Al2O3-13% TiO2 coating in fresh tropical seawater. The presence of the metallic bonding layer reduces the coating porosity and increases the surface roughness for both microparticle and nanoparticle coatings. The nanoparticle exhibits better corrosion rate of 1.9×10−6 mmpy compared to the microparticle coating, with a corrosion rate of 3.05×10−6 mmpy. However, the presence of the metallic bonding layer increases the corrosion rate for both micro and nanoparticle coatings. The corrosion mechanism for the coating with and without the metallic bonding layer is discussed in detail.  相似文献   

6.
Ceramic samples based on ZnO-Nb2O5-TiO2 compositions have been prepared using solid state ceramic route. The work was carried out over a wide range of initial ZnNb2O6 and Zn0.17Nb0.33Ti0.5O2 compounds concentration. The crystal structure and microstructure developments were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that the phase compositions of the samples present itself a columbite type and mixture of two phases—solid solutions of columbite and rutile types.The sintering behavior, permittivity, its temperature coefficients and quality factor had been characterized for ceramic samples in depending on compositions. The permittivity of the samples in this system is within the limits from 24 to 80, τ? from 150 to −560 ppm/°C. For the samples with τ? ∼ 0, ?r ∼ 43.8 and Q·f = 35000 GHz at f = 9 GHz. The comparatively low sintering temperature (≤1080 °C) and high dielectric properties in microwave range make these ceramics promising for application in electronics.  相似文献   

7.
Al2O3/Al2O3 joint was achieved using Ag-Cu-Ti + B + TiH2 composite fillers at 900 °C for 10 min. The evolution mechanism of interface during brazing was discussed. Effects of Ti and B atoms content on microstructure of joints were investigated. Results show that a continuous and compact reaction layer Ti3(Cu,Al)3O forms at Al2O3/brazing alloy interface. Ti(Cu,Al) precipitates near Ti3(Cu,Al)3O layer. In situ synthesized TiB whiskers evenly distribute in Ag and Cu based solid solution. The higher content of B powders in composite fillers increases TiB whiskers content, but decreases the thickness of Ti3(Cu,Al)3O layer, while the higher TiH2 powders content thickens Ti3(Cu,Al)3O layer. Ag and Cu based solid solutions become uniform and fine with the increasing of TiB whiskers content. Ti(Cu,Al) intermetallics content increase and they gradually distribute from Al2O3 side to the central of brazing alloy, but the content of Cu based solid solution decreases when the TiH2 content increases.  相似文献   

8.
The eutectic architecture of “in situ” composites prepared by solidification from the melt in the Al2O3-Ln2O3 (ZrO2) systems gives rise to materials with a high creep resistance. With the objective to elucidate the high temperature deformation micro-mechanisms, microstructural features are investigated on crept specimens. Compressive creep experiments have been carried out between 1400 and 1550 °C for various eutectic compositions. Different deformation regimes depending on considered systems and conditions of stress and temperature are revealed. Transmission electron microscopy studies emphasize the activation of different slip systems in the alumina phase and the deformation by dislocation climb processes controlled by bulk diffusion.  相似文献   

9.
40% porous composites ZrB2-39 mol.% SiC were irradiated under a mobile laser beam, with a low power of 90 W, in a protective atmosphere of flowing argon. Quasi-full densification of the surface zone was obtained, with thicknesses of more than 20 μm. Temperature reached ca. 2500 °C and a fusible phase rich in SiC appeared, which partially dissolved the ZrB2, favouring its sintering. The liquid phase filled the porosity present between the ZrB2 grains, and migrated towards the surface and the bulk of the samples. After cooling, the liquid phase demixed, according to the ZrB2-SiC phase diagram, and the phases ZrB2 and SiC interweaved in a eutectic-like solid phase, co-existing with granular zones mainly composed of ZrB2. Only few cracks were observed. Traces of free carbon were found at the surface, while oxygen never penetrated inside the samples, despite the presence of traces of this element in the surrounding atmosphere. These two last observations were explained by a thermodynamic study. The pellets so obtained could find applications in the fields of aerospace and of low-temperature protonic ceramic fuel cells.  相似文献   

10.
11.
Isomerization of n-hexane and n-pentane were studied using equivalent 5 monolayers of MoO3 deposited on TiO2. Addition of 2.5% Pt by weight of MoO3 on the Mo catalyst resulted in an increase in the catalytic activity of the system in favor of hydrocracking products. Surface characterization by XPS-UPS and ISS reveal that the sample surface contains Oxygen, Molybdenum, Platinum and Titanium. Apparently, the metallic properties of the deposited Pt favors the hydrocracking reactions and becomes dominant at reaction temperatures higher than 623 K. Balanced metal-acid functions in MoO2 − x(OH)y phase seems to be in optimized condition toward the hydroisomerization process. The contribution of Platinum addition to this catalytic reaction is not obvious. Combination of surface XPS-UPS, ISS and catalytic reactions carried out at similar experimental conditions enabled us to have better insight concerning the catalytic activities of the different chemical species present on the sample surface.  相似文献   

12.
Phase equilibria and glass formation studies of the (1 − x)TeO2-xCdO system (0.05 ≤ x ≤ 0.33 mol) were realized by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The samples were prepared by applying a conventional melt-quenching technique at 800 °C. The glass formation range of the system was determined as 0.05 ≤ x < 0.15 and the sample containing 10 mol% CdO showed the highest glass stability. Crystallization behavior of the TeO2-CdO glasses was investigated and formation and/or transformation of different phases were detected for each crystallization reaction. In order to obtain thermal stability of the system, as-cast samples were heat-treated above all crystallization reaction temperatures at 550 °C for 24 h. A binary eutectic: liquid → TeO2 + CdTe2O5 was detected at 638 ± 4 °C. Crystallization behavior of the TeO2-CdO glasses and microstructural characterization of the TeO2-CdTe2O5 system was realized.  相似文献   

13.
In this work, we investigated titanium dioxide (TiO2) nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation (PCO) of propene at low concentration (100 ppmv) in gaseous phase. The materials were prepared via sol–gel method using sacrificial multi-walled carbon nanotubes (CNT) as templates and subsequent heat treatments to obtain the desired crystalline phase (anatase, rutile or a mixture of both) and eventually to remove the carbon template. We also studied rutile nanotubes for the first time and demonstrate that the activity strongly depends on the crystalline composition, following rutile < anatase < anatase/rutile mixture. The enhanced activity of the anatase–rutile mixture is attributed to the decrease in the electron–hole pair recombination due to the multiphasic nature of the particles. The key result of this work is the exceptional performance of the CNT–TiO2 hybrid, which yielded the highest observed photocatalytic activity. The improved performance is attributed to synergistic effects due to the hybrid nature of the material, resulting in small anatase crystalline sizes (CNT act as heat sinks) and a reduced electron–hole pair recombination rate (CNTs act as electron traps). These results demonstrate the great potential of hybrid materials and stimulate further research on CNT-inorganic hybrid materials in photocatalysis and related areas.  相似文献   

14.
TiO2- and CeO2-promoted bulk Ni2P catalysts were prepared by impregnation and in-situ H2 temperature-programmed reduction method. The prepared catalysts were characterized by XRD and XPS. The hydrogenation activities of the catalysts were studied using 1.5 wt.% 1-heptene in toluene and 1.0 wt.% phenylacetylene in ethanol as the model feeds. The results indicate that bulk Ni2P possesses low hydrogenation activity but is tunable by simply controlling the content of the additives (TiO2 or CeO2), suggesting that TiO2 and CeO2 are effective promoters to enhance the hydrogenation activity of Ni2P.  相似文献   

15.
Behnaz Hojjati 《Polymer》2007,48(20):5850-5858
Due to the strong tendency of nanoparticles such as metal oxides to agglomerate, homogeneous dispersion of these materials in a polymeric matrix is extremely challenging. In order to overcome this problem and to enhance the filler-polymer interaction, this study focused on living polymerization that was initialized from the surface of titania nanofillers. A new method for synthesizing TiO2/polymer nanocomposites was found with a good dispersion of the nanofillers by using the bifunctional RAFT agent, 2-{[(butylsulfanyl)carbonothioyl]sulfanyl}propanoic acid). This RAFT agent has an available carboxyl group to anchor onto TiO2 nanoparticles, and an SC(SC4H9) moiety for subsequent RAFT polymerization of acrylic acid (AA) to form n-TiO2/PAA nanocomposites. The functionalization of n-TiO2 was determined by FTIR and partitioning studies, the livingness of the polymerization was verified using GPC and NMR, while the dispersion of the inorganic filler in the polymer was studied using electron microscopy, FTIR and thermal analysis.  相似文献   

16.
对静电纺丝法制备的TiO2和TiO2-V2O5纳米纤维进行光催化脱除模拟烟气中Hg0的研究。对纳米纤维进行了SEM、TEM、XRD、BET和UV-Vis检测。结果表明TiO2-V2O5纳米纤维为锐钛矿,V2O5高度分散在TiO2中。纤维直径在200 nm左右,由粒径为10 nm左右的微粒组成。掺杂V2O5后,纤维的吸光范围扩大,在可见光范围内的吸光度比纯TiO2时有了很大提高。实验研究了不同光照条件、V2O5的掺杂量和循环次数对脱汞的影响,分析了TiO2-V2O5催化脱汞的机理。当V2O5的质量含量为3%时,TiO2-V2O5在可见光下的脱汞率可达到66%,比纯TiO2时的7%有了显著提高;纤维的脱汞性能稳定,多次循环后紫外光和可见光下的脱汞率仍分别保持在80%和65%左右。电子的跃迁和电子、空穴的快速分离是TiO2-V2O5在可见光下脱汞率提高的主要原因。  相似文献   

17.
This paper discusses the effects of plasma spray parameters on the mechanical properties of nanostructured TiO2 coatings deposited on mild steel substrates. The design of experiment method was applied to investigate the significant effects of each property and to optimize the operational spray parameters. Plasma power, powder feed rate, and stand-off distance were selected as independent variables. Agglomerated and sintered nano-TiO2 powder was deposited on A-36 commercial mild steel. The microstructural and mechanical properties of the coatings such as porosity, microhardness, surface roughness, and wear rate were evaluated. Both plasma power and powder feed rate were found to be the main factors affecting all four responses. It was also noted that the stand-off distance was a significant factor mainly in influencing the surface roughness of the coatings. All in all, the optimized properties can be achieved by applying a plasma power of 30 KW (high level), a powder feed rate of 22 g/min (high level), and a stand-off distance of 80 mm (low level).  相似文献   

18.
Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy. The antibacterial activities of the composite films were studied by a fluorescence label method using Escherichia coli (E. coli) as a model. The as-prepared mesoporous TiO2 films showed much higher antimicrobial efficiency than that of glass and commercial P25 TiO2 spinning film. The facts would result from the high surface area, small crystal size and more active sites for the mesoporous catalysis. After the doping of Ag, a significant improvement for the antimicrobial ability was obtained. To elucidate the roles of the membrane photocatalyst and the doped silver in the antimicrobial activity, cells from a silver-resistant E. coli were used. These results indicated that Ag nanoparticles in the mesoporous were not only an antimicrobial but also an intensifier for photocatalysis. The as-prepared mesoporous composite film is promising in application of photocatalysis, antimicrobial and self-clean technologies.  相似文献   

19.
20.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号