首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
磺酸盐阴离子表面活性剂具有原料来源广、合成成本低、粘弹性能好等优点,是油田广泛使用的表面活性剂。通过分析磺酸盐阴离子表面活性剂的影响因素,研究了无机盐、浓度、温度、助剂对于该表面活性剂的影响。利用实验分析了质量分数为4%磺酸盐阴离子表面活性剂DS10-2-10溶液在不同温度下的粘度、不同浓度下表面活性剂的粘度、加入1%和4%的NaCl时表面活性剂粘度的随着温度的变化和加入不同助剂,表面活性剂的粘度变化。通过研究不同因数对磺酸盐阴离子表面活性剂粘度的影响,为矿场中使用该表面活性剂提供实验指导。  相似文献   

2.
郭亚梅  李明远  贺辉宗  林梅钦 《应用化工》2009,38(9):1300-1303,1306
利用正交实验设计研究了聚合物A、石油磺酸盐B、表面活性剂C三种因素共存时对原油模拟油/水界面剪切粘度的影响。单因素实验表明,表面活性剂C使原油模拟油/水界面粘度降低,而聚合物A的存在则使油/水界面剪切粘度上升。而三种因素共存时,在实验条件下,表面活性剂C对油/水界面剪切粘度有一定的影响,聚合物A和石油磺酸盐B看不出有较大影响。因此,在聚合物-表面活性剂复合驱体系中,界面剪切粘度的变化主要取决于体系中表面活性剂的变化。  相似文献   

3.
表面活性剂对二氧化硅溶胶稳定性的影响   总被引:5,自引:3,他引:2  
田立朋  王力 《硅酸盐通报》2009,28(6):1322-1326
研究了表面活性剂对二氧化硅溶胶粘度和稳定性的影响.在二氧化硅溶胶中添加不同表面活性剂,测定了该混合体系的粘度变化和稳定性,结果表明阴离子表面活性剂可以降低硅溶胶的粘度,其CMC大约在4.6×10~(-3) mol/L左右,阴离子表面活性剂可以提高硅溶胶稳定性,极值为1.43×10~(-3) mol/L.表面活性剂SDBS对溶胶粘度的影响与其在溶胶颗粒上的包覆有关,SDBS对溶胶的稳定作用是由于SDBS胶束的形成,溶胶颗粒对SDBS的吸附会降低溶胶的稳定性.阴离子和非离子表面活性剂能提高二氧化硅溶胶稳定性,而阳离子表面活性剂会降低溶胶稳定性.  相似文献   

4.
用毛细波 -纵向波技术研究了非离子表面活性剂octaethyleneglycolmonododecylether(C12 E8)的表面膨胀性质。利用毛细波 -纵向波的波数和衰减系数探索了非离子表面活性剂溶液的表面膨胀模量、表面膨胀弹性、表面膨胀粘度、静态膨胀弹性、表面粘度相角与浓度和表面变形频率的关系。还通过表面膨胀性质和Frumkin表面状态方程的研究 ,探讨了非离子表面活性剂溶液的表面吸附动力学性质  相似文献   

5.
制备了一种两性聚合物,利用粘度法、界面张力法研究了两性聚合物与阴离子表面活性剂在溶液中的相互作用。实验结果表明:随着表面活性剂的增加,聚合物溶液粘度先增加、再降低;同时,聚合物对阴离子表面活性剂的界面性能也有较大影响,聚合物的加入使表面活性剂降低油/水界面张力的能力增大,油/水界面张力达到平衡所需时间缩短。  相似文献   

6.
本文通过实验方法,研究了碱、表面活性剂、聚合物三者浓度变化对界面张力、三元体系粘度、吸附量的影响规律和影响机理。研究表明,碱浓度的增加可以有效降低聚合物和表面活性剂的吸附量;随着碱浓度的不断增大,界面张力呈现出先增大后减小的趋势;随着碱浓度的增大,聚合物粘度呈现出先减小后增大的趋势,表面活性剂浓度的增大会使聚合物粘度不断增大,但两者对于溶液粘度的影响十分微小,基本可以忽略。  相似文献   

7.
表面活性剂/大分子混合溶液的流变性   总被引:1,自引:0,他引:1  
本报道了不同表面活性剂/大分子混合体系流变性随表面活性剂浓度的变化规律。离子型表面活性剂使非离子大分子表现出聚电解质的粘度行为,大分子的存在也可使棒状胶束转化为球状胶束,从而使粘度降低。  相似文献   

8.
针对当前石油开采过程中传统阴阳离子表面活性剂存在容易吸附,同时耐温性能差的问题,结合表明活性剂的结构特点,制备一种耐高温阴离子表面活性剂。对此,以磺酸盐表面活性剂为例,采用流变仪作为试验仪器,以粘度作为评价指标,探讨不同疏水碳链碳数、不同基团数、不同氯化钠掺量、甲苯酸钠掺量和不同有机醇OA掺量对压裂液在不同温度下的粘度的影响,得到当磺酸盐表面活性剂(4%)+有机醇OA(3%)的配方下,其粘度最高,并且耐温性较好。  相似文献   

9.
表面活性剂的优选与评价是二元复合驱研究中很重要的一部分。使用美国Texas-500型界面张力仪测试油水界面张力,优选出符合标准的s5表面活性剂。同时,测试不同浓度的表面活性剂对聚合物溶液粘度的影响,发现随着表面活性剂浓度的增加,聚合物溶液的粘度会有一定程度的增加。研究结果表明,在合适的浓度条件下,优选出的s5表面活性剂不仅能将油水界面张力降低至超低界面张力水平,又可以使聚合物溶液的粘度保持较高水平,可以应用于二元复合驱。  相似文献   

10.
喷墨打印机墨水的配方优化及制备   总被引:1,自引:0,他引:1  
使用均匀设计方法进行了喷墨墨水的配方优化,并建立了粘度与甘油、乙醇和表面活性剂与表面张力的关系模型。模型表明:粘度主要和甘油、乙醇的用量相关,表面张力主要受表面活性剂的影响。  相似文献   

11.
目前,对于聚表剂多采用瓶试法来表征其乳化性能,本研究讨论了聚表剂水溶液原油乳液的制备方法,在瓶试法研究的基础上,通过油砂吸附前后粘度及析水率评价,乳液稳定性评价,乳液微观结构观测等方法评价了驱油用聚表剂的乳化性能,丰富了聚表剂乳化性能表征手段。  相似文献   

12.
This study considered the stability and rheology of a type of high internal phase water-in-oil emulsions (W/O) emulsion. The aqueous phase of the emulsions is a super-cooled inorganic salt solution. The oil phase is a mixture of industrial grade oils and stabilizer. Instability of these systems manifests as crystallization of the metastable dispersed droplets with time. This work focused on the effects of oil polarity and oil viscosity on the stability of these emulsions. Ten types of industrial oils, covering the viscosity range 1.4–53.2?cP, and with varying polarity, were used in combination with polymeric poly(isobutylene) succinic anhydride (PIBSA) and sorbitan monooleate (SMO)-based surfactants. The effect of oil relative polarity on rheological parameters of the emulsion was evident mainly in the emulsions stabilized using polymeric surfactant, whereas the oil viscosity did not show any significant effect. The optimum stability of the emulsions stabilized with SMO was achieved using high polar oils with a viscosity of 3?±?0.5?cP. However, when using the PIBSA surfactant, the best emulsion stability was achieved with low polar, high viscosity oils.  相似文献   

13.
Pipeline transportation is the most convenient means of transportation of crude oil continuously and economically from production site to refinery. However, transportation of heavy crude oil (HCO) through pipelines is difficult due to its high viscosity. The high viscosity of heavy crude oil is mainly due to the presence of poly-aromatic compounds like resins and asphaltenes. Emulsification of HCO using surfactant is believed to be the most favorable technique to reduce the viscosity of HCO for efficient pipeline transport. In the present study, oil-in-water (O/W) emulsion has been formulated using a non-ionic surfactant Polyoxyethylene (5) sorbitan monooleate (PS-81) at different pH, surfactant concentration, and oil content. Box–Behnken response surface method has been used to optimize two responses, apparent viscosity and emulsion stability index (ESI). The optimal values of the parameters found are 75%v/v oil content, 2.5%w/v surfactant concentration, and pH value of 7 at which experimental value of emulsion viscosity is 0.2162 Pa·s, at 150 RPM, with a reduction of viscosity by 95.8% and having ESI of 98.16 after 24 h at 30°C.  相似文献   

14.
反胶团是形成W/O乳液或微乳液的基础。通过对若干表面活性剂和油二元系溶液粘滞系数的实际测量,发现不同的表面活性剂与油的组合,其粘滞系数性质有不同的表现。从这个结果可以确定反胶团粒子出现与否,而反胶团粒子的出现能够提供了一个简单的方法,来判断某未知油能否被乳化成W/O型乳液或微乳液。  相似文献   

15.
以1 000 mPa.s硅油为主要原料,选用非离子型表面活性剂(span-60和tween-60的质量比为0.43:0.57)为复合乳化剂,复配乳化剂含量为硅油的50%,采用转相乳化法,乳化温度80℃,乳化时间60 min,制备了硅油含量为30%的二甲基乳化硅油,其外观为均匀、细腻的乳白色黏性液体。  相似文献   

16.
稠油O/W型乳状液稳定性的研究   总被引:1,自引:0,他引:1  
以大庆黑帝庙稠油为研究对象,依据稠油乳化降粘原理及O/W型乳状液的形成机制,考察了表面活性剂类型及添加量,碱的添加量,温度、油/水比、振荡方式等因素对稠油O/W型乳状液稳定性的影响。为筛选降粘剂复合配方及选择降低粘工艺提供了必要的基础数据。  相似文献   

17.
A stable formula using oil-in-water-in-oil (O/W/O) type multiple emulsions was investigated. The components consisted of hydrophilic nonionic surfactant (HCO-60), organophilic montmorillonite, and lipophilic nonionic surfactant (DIS-14). O/W/O emulsions were prepared by a double-step procedure in which an O/W emulsion was prepared in the first step, and then the O/W emulsion was “re-emulsified” in an oil phase with organophilic montmorillonite. The diameter of the innermost oil droplets decreased with increasing HCO-60 content (0.1–3%), while the viscosity showed a maximum at 1% of HCO-60, indicating that the yiel of re-emulsification is highest at this condition. Viscosity of the O/W/O emulsion increased with increasing organophilic montmorillonite and DIS-14. According to the results of a phase ratio study, viscosity and stability of the O/W/O emulsion decreased at high weight fraction of inner oil phase (0.4–0.5), indicating that the excess amount of inner oil phase is absorbed by the outer oil phase. These results revealed that the weight fraction of inner oil phase should be kept below 0.3 for a stable O/W/O emulsion. A similar study on the weight fraction of O/W phase [фO/W)/O] suggested that the O/W/O emulsion is stable at ϕ(O/W)/O=0.65–0.70.  相似文献   

18.
Surfactant is extensively used as chemicals during chemical enhanced oil recovery (CEOR) process. Effectiveness of surfactant CEOR process depends on several parameters like formation of micro emulsion, ultra-low interfacial tension (IFT) and adsorption of surfactant. First two parameters enhance the effectiveness while the last parameter reduces the effectiveness. Micro emulsions are highly desirable for CEOR due to its low interfacial tension (IFT) value and higher viscosity. In this research the size of the emulsions were studied with particle size analyzer to study the liquid–liquid absorption process and the entrapment of oil drops inside surfactant drop. Initially, the average surfactant drop size was found to be 100 nm, after mixing the surfactant slug with reservoir crude, the size was increase up to 10 times. It signifies the formation of micro emulsion between surfactant and oil. Another attempt was done in this research to study the adsorption mechanism of surfactant on reservoir rock. The process of adsorption was studied by Langmuir and Freundlich isotherm to understand the adsorption phenomena. In this study, it was found that the adsorption follows Freundlich isotherm and the adsorption phenomena was chemical for surfactant flooding process. In chemical adsorption phenomena, the rate of adsorption is high because, surfactant molecules are adsorbed layer after layer by the rock surface. Use of alkali along with surfactant reduces adsorption of surfactant since, alkali blocked the active clay sites before interacting with surfactant and hence the adsorption isotherm was found to be Langmuir and phenomena was physical adsorption.  相似文献   

19.
The phase inversion of polymeric water‐in‐oil emulsions has been systematically studied by employing nonylphenol and alcohol ethoxylates with various chemistries as well as physical chemical characteristics. A combination of thermodynamics, phase diagrams, and rheometry were used to investigate the behavior of the inverting surfactants as well as the inverted, acrylamide‐based, cationic emulsions. Polymeric inverse‐emulsions containing the inverting surfactant showed no evidence of low‐shear thinning, though they did thin as hydrodynamic forces increased (0.01 to 100 s?1) prior to reaching a chemistry‐ and concentration‐independent plateau, as is typical for emulsions. The viscosity of emulsions containing inverting surfactants reached a minimum at 1.2% of the “emulsion breaker”. The efficiency of inversion was optimized at 2 wt % of nonylphenols, expressed as a percentage of the total emulsion mass, and increased with the degree of ethoxylation. Interestingly, the viscosity of the polymer inverted in water was maximized at an inverting‐surfactant level corresponding to the CMC of the pure surfactant in water. The alcohol ethoxylates required a higher concentration for inversion (3 wt %), though they provided a higher ultimate inverse viscosity of the polymeric emulsion in water. Therefore, while the inversion process was less efficient with alcohol ethoxylates, the ultimate dilution solution properties of the polyelectrolytes liberated were improved relative to the nonylphenols. Overall, the process of adding a water‐in‐oil emulsion, containing an emulsion breaker, to an excess of water involves a catastrophic inversion mechanism. To be effective under such circumstances, an inverting surfactant should have a partition coefficient between the aqueous an organic phases greatly exceeding unity as well as a hydrophilic–lipophilic balance (HLB) above 12. Effectiveness increases linearly with the partition coefficient. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3567–3584, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号