首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
两次早春暴雪过程的对比分析   总被引:8,自引:0,他引:8  
利用常规资料、区域气象自动站、卫星云图、多普勒天气雷达和闪电定位资料等,对2010年和2011年山东早春出现的两次暴雪天气过程进行了对比分析,重点研究了暴雪的对流性和成因.结果表明,低涡(切变线)、低空急流、地面气旋(倒槽)等是暴雪的主要影响系统;高空和地面天气系统在时间和空间配置上的差异是造成暴雪对流性不同的关键因素.红外云图能很好地反映暴雪天气过程对流性的强弱;多普勒天气雷达可清楚地识别出两次过程的中尺度结构.南北对称的垂直速度对是早春暴雪的重要特征;对流层低层逆温层和暴雪前期爆发性增暖是造成“雷打雪”的重要因素;物理量诊断的对流不稳定存在与否是区别“雷打雪”和常规暴雪的重要标志;垂直风切变在“雷打雪”暴雪过程中发挥重要作用.  相似文献   

2.
利用常规地面观测和探空资料、NCEP FNL 1°×1°以及GDAS 0.5°×0.5°再分析资料,对2016年11月21—23日和2017年3月12—13日陕西省两次区域性暴雪(分别简称"过程I"和"过程II")进行分析,分别从2次过程的观测特征、环流特征、水汽条件、对流条件等方面对比研究。结果表明:(1)2次过程在500 hPa均受切断低压和东北冷涡影响,中低层700~850 hPa存在低涡切变,地面受倒槽影响,并伴随回流性质的冷锋。(2)过程I的冷空气更加强盛,降水相态以雪为主,具有对流性质,降雪持续时间长、强度大;过程II冷空气相对较弱,以稳定的降雨和降雪为主。(3)过程I的水汽来源以冷湿气团为主,而过程II则由暖湿水汽占主导地位,且回流性更加显著。(4)过程I产生对流的主要原因是西南暖湿气流在强冷垫上方爬升,在中低层形成了逆温层,锋面过境后触发了对流不稳定,从而产生了对流性天气。  相似文献   

3.
4.
朱蕾  王清平  王勇  赵克明 《湖北气象》2020,39(3):225-233
利用常规观测资料、地面自动站、NCAR/NCEP FNL 1°×1°再分析资料和FY2E卫星云图对2014年12月7—8日、2015年12月10—12日发生在新疆天山北坡乌鲁木齐地区的两次有气象记录以来的极端暴雪天气过程,从水汽、不稳定条件、动力、温湿层结及中尺度特征方面进行对比分析,得出如下结论:(1) 500 hPa高空槽、700 hPa短波槽和850 hPa切变线是这两次过程共同的影响系统,两次过程500 hPa均有明显西南急流和-36℃冷中心,700 hPa和850 hPa均有明显西北气流相配合。(2)两次过程中整层较大的比湿和水汽通量散度输送为暴雪提供了充足的水汽条件。(3)风场辐合与天山地形抬升产生的强上升气流和强辐合为暴雪的形成提供了有利的动力条件。(4)两次过程发生前,乌鲁木齐上空低层均有东南风层控制,存在逆温,有利于能量聚集。但是由于两次过程环流形势、水汽分布、能量聚集程度及中尺度特征有所不同,因此两个过程的降雪量存在明显差别,对城市的影响程度也有差异。其中"12.11"过程中尺度系统影响时间更长、冷中心更强,造成的降雪天气更为罕见。  相似文献   

5.
利用常规气象观测、FY-4A卫星及ERA5再分析数据,对比分析2021年2月25—27日(过程I)和4月1—4日(过程II)西天山南麓阿克苏地区拜城县2次暴雪过程成因。结果表明有差异也有共性,共性为均在中亚低值系统影响下发生,300 hPa偏西急流、500 hPa低涡(低槽)、850 hPa偏东急流、地面冷高压冷锋及暴雪区上空垂直环流的发展是形成暴雪的主要动力机制;均有偏西和西南路径的水汽输送,水汽强辐合出现在700 hPa;降雪期间TBB极值、<-30 ℃的维持时间及>-5 ℃对降雪量级、持续时间及降水相态预报有很好的指示意义。不同点主要表现在:(1)过程I为中亚低槽快速东移型,偏东急流仅在850 hPa,急流强度较弱且位置偏南,过程II为中亚低涡缓慢东移型,700 hPa、850 hPa有明显偏东急流且持续时间长,位置西伸至西天山南麓阿克苏地区;(2)与过程I相比,过程II上升运动中心更接近暴雪中心,且强度强、伸展高、持续时间长,冷暖交汇更剧烈,暖平流导致降水相态发生变化,偏东水汽输送明显且辐合强度更强、辐合持续时间更长。  相似文献   

6.
利用常规气象资料和自动站数据,对2007年2月6日一8日和2011年2月25日一27日发生在内蒙古河套地区的两次暴雪过程进行对比分析,结果表明,500hPa中亚和东亚分别有冷槽活动,中亚槽前有分裂冷槽东移推动两槽间暖脊发展东移至河套以东,河套西部处在西南气流控制下。当500hPa分裂东移的冷槽与700hPa高原低槽、西北涡或切变线和地面河套倒槽或河套气旋垂直叠置,高空槽后有冷空气下沉锲入到暖湿气层底层形成动力抬升时,触发暴雪产生。低层负散度、正涡度,深厚的负垂直速度,高、低空急流垂直耦合形成的抽吸作用,高、低层冷暖平流造成的热力不稳定,较长时间水汽和热量输送、积聚,使高能、高湿舌伸人河套形成的位势不稳定,河套外围三面环山形成的地形抬升作用叠置在抬升区上空,为触发暴雪产生提供了强劲动力。  相似文献   

7.
利用高空和地面观测资料对济南市秋末冬初两次暴雪过程进行了对比分析。结果表明:两次暴雪过程500hPa影响系统都是中支槽,但环流形势分别是"两槽一脊"型和"一槽一脊"型;700hPa西南低空急流为暴雪的产生提供了充沛的水汽条件;低层东北风携带冷空气形成冷空气垫,西南暖湿气流沿冷空气垫爬升是暴雪形成的重要动力条件,两次暴雪过程上升运动区都伸展到200hPa,但上升运动区的起始高度不同;1000hPa气温≤1℃或地面2m气温≤2℃对降水相态的转变有较好的指示意义,气温越低出现降雪的概率越大。  相似文献   

8.
1引言回流天气是冬季黑龙江省产生暴雪的一种特殊的天气形势,黑龙江省回流天气特征是在一定的环流形势下.中低层有由东部或东南部海上伸向陆地的暖脊,风向以出现偏东风为标志,地面气压场上,黑龙江省处于低压北部的偏东气流里。2009年冬季,黑龙江省出现了两场典型回流暴雪天气过程,通过分析发现:在回流暴雪形成与发展的过程中,动力锋生机制发挥了重要作用。强降雪产生在锋区靠近暖区一侧.地形在回流暴雪过程中,通过其强迫分别位于迎风坡和背风坡的正负垂直速度中心,对降雪起明显的增幅作用。  相似文献   

9.
利用常规地面和高空观测资料及欧洲中心ERA-5再分析数据,对2021年12月25—27日(21·12)、2022年2月21—23日(22·02)发生在湖南的两次暴雪过程进行诊断分析。两次暴雪过程有强度大、影响范围广,暴雪落区较为重合的特点。两次暴雪过程也表现出明显差异,21·12过程的累计降雪量小于22·02过程,但21·12以干雪为主,22·02以湿雪为主。分析差异的成因发现:(1)22·02过程水汽辐合强度强、延伸高度高、厚度厚,动力条件由南支槽和低涡提供;21·12过程水汽条件相对弱,动力条件由冷锋强迫抬升提供。(2)21·12过程冷空气从低层南下,云中冰相粒子比例大,温度层结满足干雪条件;22·02过程中层气温下降,云中冰相粒子与水相粒子共存,地面气温在0℃以上,故以湿雪为主。  相似文献   

10.
利用常规气象观测资料和NCEP再分析资料对2016年秋末(11月22—23日)和冬末(2017年2月21—22日)河南省两次区域性暴雪过程进行了对比分析。结果表明:(1)两次暴雪过程均出现在中高空西南或偏南气流、地面及近地层东北或偏北气流的有利形势下,是河南省典型的暴雪形势。(2)前者冷空气强,冷垫深厚,副冷锋对降雪的加强起到主要作用;后者冷空气较弱,冷垫浅薄,西路冷空气的补充为降雪的形成与加强起到重要作用。(3)持续的锋生使降雪增大,前者锋生和动力作用比后者更强,水汽输送和水汽辐合集中在中上层,后者集中在中低层,水汽条件更充沛。(4)两次暴雪过程均产生在低层冷平流和中高层暖平流相叠置的区域,均为条件性对称不稳定,后者的条件性对称不稳定较前者更显著。(5)前者整层气温均在0℃以下,降水相态为纯雪;后者中层出现暖层,有一个雨转雪的过程,影响了积雪深度。  相似文献   

11.
选取青海海北门源地区2014年4月20日—21日和2014年10月10日—11日两次极端暴雪天气过程,利用micaps常规观测资料以及地面加密观测资料,对这两次暴雪的环流形势、影响系统及物理量场进行对比分析。结果表明,两次过程影响系统虽有不同,但门源上空都处于水汽饱和区内,空气湿度大,湿层较厚,低空西南气流的存在加强为水汽输送提供了必要条件,上升运动为降雪天气的发生发展提供了有利的动力条件,上升运动最强时段恰好与降雪最强时段对应,低层辐合、高层辐散的系统配置有利于降雪的加强,假相当位温场的演变发展与降雪落区基本一致。  相似文献   

12.
两次冬季寒潮、暴雪天气过程的对比分析   总被引:1,自引:0,他引:1  
应用MICAPS资料,从大气环流形势演变、物理量诊断分析方面,对2002年1月15日至18日和2003年2月9日至11日发生在南京市的寒潮、暴雪天气过程作对比分析,以揭示此类天气主要天气系统的特点,为此类天气的预报提供一些有益的思路。  相似文献   

13.
应用常规观测、风廓线雷达、多普勒雷达及NCEP再分析资料,从影响系统、水汽、热动力演变等方面对辽宁2次雨转暴雪成因及降雪量可预报性进行对比分析。结果表明:过程Ⅰ回暖时间长,锋生时间短,近地面锋区影响期间降水增强,925~850 hPa锋区垂直分布,850 hPa锋区过境后强降雪结束;过程Ⅱ短暂强回暖,冷空气楔入低层早,暖湿空气沿冷垫上滑,锋生时间长,近地面锋区影响期间无降水,中层锋区与低层东北回流叠加时出现强降雪,850 hPa锋区过境缓慢,强降雪持续时间长,700 hPa锋区过境后强降雪结束。雷达回波特征显示,0℃层亮带高度在降水相态转变为雨夹雪前明显降低,雨夹雪阶段基本维持,降雪后0℃层亮带消失。对数值预报降雪量订正,首先关注前期回暖、气温日变化与系统性降温叠加作用,再根据不同类型降雪影响系统动力、水汽辐合等条件判断降水时段,综合订正降雪量。  相似文献   

14.
山东省两次暴雪天气的对比分析   总被引:6,自引:1,他引:6  
应用常规天气图资料、探空资料、加密自动站观测资料、地基GPS/MET遥感大气水汽观测资料、卫星云图、多普勒雷达观测资料和NCEP/NCAR 1。×1。再分析资料,采用诊断分析和对比分析方法,对山东省2009年11月11 12日和2010年2月28日两次暴雪天气的水汽、热力、动力条件和中尺度特征进行对比分析。结果表明,(1)两次暴雪都是受高空槽影响产生的,700hPa附近有较强的偏南气流向暴雪区输送暖湿空气,整层大气高湿近于饱和,中低层有逆温,整层温度≤0 C;暴雪产生在700~500 hPa槽前西南气流前部、850 hPa东北风与东南风辐合的区域,近地面层都为东北风。(2)不同点是,前次暴雪过程中低层先有冷空气影响,然后中高层暖湿气流北上,中低层能量低,以稳定性降雪为主,持续时间长;后次暴雪过程中,先是中低层暖湿气流北上,而后强冷空气从低层锲入,低层形成低涡,地面形成气旋,中低层对流不稳定,对流发展,降雪强度大,持续时间短。(3)暴雪期间GPS/MET水汽监测的可降水量在20 mm左右,对降雪量有一定的指示性。加密自动站观测中温度0C线是雨、雪的分界线,有助于判别降水的形态。  相似文献   

15.
黑龙江省2次暴雪天气过程对比分析   总被引:1,自引:0,他引:1  
2002年10月28日和2006年4月20日黑龙江省东部地区出现大范围的降雪过程,2次过程降雪量大,积雪深,对农业、交通等方面都产生了极大的影响。本文主要应用常规观测资料分析2次强降雪过程形成原因,通过对比找出特点。  相似文献   

16.
利用常规观测资料、NCEP再分析资料、GPS/MET水汽资料和天气雷达资料,对江西省2016年1月22日和31日两次暴雪过程的动力条件、水汽条件和温度垂直结构等进行了对比分析。结果表明: 1) 500 hPa短波槽、700 hPa和850 hPa的切变线和西南急流是强降雪直接影响系统。整层大气高湿近于饱和,中低层有逆温。暴雪产生在700—500 hPa槽前西南气流的前部,850 hPa东北风与东南风辐合的区域,近地面层都是东北风。2) 两次暴雪过程水汽输送条件、冷空气的强度以及南下的方式都有差异。前次暴雪过程中低层先有冷空气影响,而后中高层暖湿气流北上,中低层能量低,以稳定性降雪为主,持续时间长;后次暴雪过程中,先是中低层暖湿气流北上,而后强冷空气从低层楔入,中低层对流不稳定,对流发展,降雪强度大,持续时间短。3) 两次暴雪期间GPS/MET可降水量均在20 mm以上,降雪开始前和暴雪出现前GPS/MET可降水量都出现连续增长的峰值,对降雪预报有一定的指示性。另外,雷达速度图上零速度线的形态变化对降雪持续时间有很好的指示意义。  相似文献   

17.
本文利用常规观测资料,对2014年11月30日和2016年11月4日牡丹江出现的两场暴雪天气过程进行初步对比分析,结果表明:过程1是高空阶梯槽的形成和维持,为暴雪提供了有利的环流背景,配合地面低压倒槽结构产生的暴雪过程;过程2是鄂霍次克海上空的冷涡系统配合西北高空急流,将西伯利亚附近的冷空气输送到黑龙江省,与低层的暖湿空气交汇而产生的,地面受蒙古低压影响。物理量场上,过程2水汽条件和动力条件均好于过程1,充足的水汽条件是降水过程产生和维持的重要条件,而低层辐合高层辐散的抽吸作用,为降水的产生提供了有利动力条件。  相似文献   

18.
2012年11月吉林省东南山区两次雨转暴雪过程对比分析   总被引:3,自引:2,他引:3  
利用常规资料、探空资料和雷达垂直风廓线资料,对2012年11月5-6日、11-12日吉林省东南部山区两次雨转暴雪过程进行了对比分析。结果表明,两次过程的影响系统是高空冷涡配合不同发展阶段的地面气旋东移发展,强降水性质分别为锢囚锋区降水和地面气旋的暖区降水。系统的动力抬升条件与长白山区地形抬升作用结合有利于强降水的产生和加强,当天气系统从不同路径进入山区,强降水的位置不同。低层充足的水汽是大到暴雪发生的重要条件之一,两次过程的水汽分别来自东南风带来的海上暖湿气流和槽前西南急流的水汽输送。雨转雪和纯雪持续的主要原因是系统带来的冷空气降温,气温的降低可以促使雨转雪的发生。  相似文献   

19.
利用ERA Interim Daily的05°×05°资料对2018年1月3—4日和24—28日出现的两次强降雪过程(分别称为月初过程和月末过程)进行对比分析。研究结果发现,两次过程均为“西阻型”,多冷涡活动,东移高原槽前的西南气流与南下冷空气沿长江一带交汇。月初过程副高较强,中低空西南急流强盛,过程先降雨后降雪,小时降雪量大;月末过程先后受到两次低槽的影响且冷涡较强,低层有深厚冷垫,过程为纯降雪,持续时间长。两次过程均存在低空西南急流输送暖湿气流形成的水汽通量辐合,月初过程还有来自东海的水汽输送。两次过程均存在逆温,月初过程地面温度高于0 ℃,月末过程低层气温低,有冷垫存在。两次过程动力条件较好,暴雪区对应深厚的正涡度柱,低层辐合高层辐散,垂直螺旋度呈下正上负分布,且存在次级环流,增强了上升运动,有明显锋生大值区与之配合,两次过程在动力条件的各项数值指标上,月初过程更有利于降雪。通过雷达分析可知月初过程以层状云降雪回波为主,夹杂一定弱对流云降水回波,速度场上呈牛眼结构,有低空急流配合;月末过程以层状云降雪为主,牛眼结构弱,低空急流比月初过程弱。  相似文献   

20.
利用欧洲中心(European Center for Medium-Range Weather Forecasts,ECMWF)ERA-interim再分析资料、常规气象观测资料及多普勒雷达资料,对辽宁省境内发生的2007年"0304"、2009年"0212"和2017年"0221"共3次暴雪过程进行对比分析,主要研究3次暴雪过程的大尺度环流背景条件、气团、水汽来源及雷达回波和雷达参量特征的异同。结果表明:辽宁省3次暴雪过程均为受高空槽影响产生的,高空低槽配合地面冷锋或倒槽,导致动力抬升条件增强;来自不同水汽源地的气团和冷暖气团的交绥是暴雪过程增强的关键因素;降雪过程的雷达回波强度不超过40 d Bz,回波顶高低于10 km;雷达参量Z_(max)和Z_(mean15)的演变与降雪过程强弱的变化对应较好,强回波中心增强和及地的时段与主要降雪时段较一致,可以揭示系统强度的变化和降水粒子的下落,对降雪天气具有一定的预报意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号