首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Short-term variations in nutrient concentrations of water-masses have been studied in a Brittany estuary over several tidal cycles, during winter and summer. NH inf4 sup+ , NO inf2 su– , NO inf3 sup– , SiO2 and PO inf4 su3– have been measured at a fixed station. The Dourduff estuary is characterized by a very low river discharge (80 l · s–1 during the minimum water runoff and 1 000 l · s–1 during the maximum) and an important tidal range (9 m at spring tides). SiO2 and NO inf3 sup+ concentrations are directly related to freshwater flow whereas PO inf4 su3– is partially adsorbed by seston in the turbid ebb waters. NH inf4 sup+ concentration seems to be, in part, dependent upon sediment resuspension: late ebb and onset of flood periods liberate NH inf4 sup+ into the overlying water column. Nutrient concentrations are also related to seasons. Nutrient fluxes are insignificant or negative during summer periods, so the estuary imports nutrients for its own regulation whereas during winter periods it exports NO inf3 sup– and SiO2 (ca 50 kg NO inf3 sup– and ca 200 g SiO2 during a single spring tide). The NO3: PO4 ratio is always above 15:1 and can reach 300:1; moreover this ratio fluctuates during the tidal cycle. This imbalance originates in terrestrial discharges of nitrogen compounds.
Sels minéraux et cycles de marées dans un estuaire de Bretagne nord (Dourduff, France)
  相似文献   

2.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

3.
Burrowing benthic animals belonging to the same functional group may produce species-specific effects on microbially mediated nitrogen (N) processes depending upon different ecological traits. We investigated the effects of two tube-dwelling organisms, amphipods (Corophium insidiosum) and chironomid larvae (Chironomus plumosus), on benthic N cycling in bioturbated estuarine sediments. Aims of this work were to analyze the interactions among burrowers and N-related microbial processes in two distinct sedimentary environments colonized by benthic animals with different ecological traits. We hypothesized higher rates of nitrification and higher coupled nitrification–denitrification in sediments with C. insidiosum due to continuous ventilation rates. We expected higher denitrification of water column nitrate in sediments with C. plumosus due to lower and intermittent ventilation activity and lower oxygen levels in burrows. To this purpose, we combined process–specific (nitrification and denitrification) with net N flux measurements in intact and reconstructed sediments. Sediments with C. insidiosum had higher rates of oxygen demand and of potential nitrification and higher concentration of pore water NH4+ as compared to sediments with C. plumosus. Sediments with both species displayed comparable net N2 fluxes, mostly sustained by respiration of water column NO3? in sediments with chironomid larvae and by NO3? produced within sediments in sediments with corophiid amphipods. Corophium insidiosum stimulated nitrification nearly 15-fold more as compared to C. plumosus. Overall, our results demonstrate that sediments with burrowing fauna may display similar rates of denitrification, but underlying mechanisms may deeply vary and be species-specific.  相似文献   

4.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH 4 + and15NO 3 isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH 4 + and treated with acetylene, no15NO 3 was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH 4 + was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO 3 generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO 3 generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem.  相似文献   

5.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

6.
The ability to utilize NO inf3 sup– in seven high arctic plant species from Truelove Lowland, Devon Island, Canada was investigated, using an in vivo assay of maximum potential nitrate reductase (NR) activity and applications of 15N. Plant species were selected on the basis of being characteristic of nutrient-poor and nutrient-rich habitats. In all species leaves were the dominant site of NR activity. Root NR activity was negligible in all species except Saxifraga cernua. NO inf3 sup– availability per se did not appear to limit NR activity of the species typically found on nutrient-poor sites (Dryas integrifolia, Saxifraga oppositifolia, and Salix arctica), or in Cerastium alpinum, as leaf NR activities remained low, even after NO inf3 sup– addition. 15NO inf3 sup– uptake was limited in D. integrifolia and Salix arctica. However, the lack of field induction of NR activity in C. alpinum and Saxifraga oppositifolia was not due to restricted nitrate uptake, as 15NO inf3 sup– labelled NO inf3 sup– entered the roots and shoots of both species. Leaf NR activity rates were low in three of the species typical of nutrient-rich habitats (O. digyna, P. radicatum and Saxifraga cernua), sampled from a site containing low soil NO inf3 sup– . Additions of NO inf3 sup– significantly increased leaf NR activity in these latter species, suggesting that potential NR activity was limited by the availability of NO inf3 sup– . 15N labelled NO inf3 sup– was taken up by O. digyna. P. radicatum and Saxifraga cernua. Although two species (D. integrifolia and Salix arctica) showed little utilization of NO inf3 sup– , we concluded that five of the seven selected high arctic plant species (C. alpinum, O. digyna, P. radicatum, Saxifraga cernua and Saxifraga oppositifolia) do have the potential to utilize NO inf3 sup– as a nitrogen source under field conditions, with the highest potential to utilize NO inf3 sup– occurring in three of the species typically found on fertile habitats.  相似文献   

7.
W. E. Robe  H. Griffiths 《Oecologia》1994,100(4):368-378
The decline and disappearance of Littorella uniflora from oligotrophic waters which have become eutrophic has been associated with shading or reduced CO2 supply. However NO inf3 sup– concentrations can reach very high levels (100–2000 mmol m–3 compared with <1–3 in oligotrophic habitats). To investigate the impact of NO inf3 sup– loading alone, plants were grown under three NO inf3 sup– regimes (very low, near-natural and high). The interactive effects of NO inf3 sup– and photon flux density (low and high regimes) on N assimilation and accumulation, CO2 concentrating mechanisms, C3 photosynthesis and growth were also examined. The results were unexpected. Increased NO inf3 sup– supply had very little effect on photosynthetic capacity, crassulacean acid metabolism (CAM) or lacunal CO2 concentrations ([CO2]i), although there was considerable plasticity with respect to light regime. In contrast, increased NO inf3 sup– supply resulted in a marked accumulation of NO inf3 sup– , free amino acids and soluble protein in shoots and roots (up to 25 mol m–3, 30 mol m–3 and 9 mg g–1 fresh weight respectively in roots), while fresh weight and relative growth rate were reduced. Total N content even under the very low NO inf3 sup– regime (1.6–2.3%) was mid-range for aquatic and terrestrial species (and 3.1–4.3% under the high NO inf3 sup– regime). These findings, together with field data, suggest that L. uniflora is not growth limited by low NO inf3 sup– supply in natural oligotophic habitats, due not to an efficient photosynthetic nitrogen use but to a slow growth rate, a low N requirement and to the use of storage to avoid N stress. However the increased NO inf3 sup– concentrations in eutrophic environments seem likely have detrimental effects on the long-term survival of L. uniflora, possibly as a consequence of N accumulation.  相似文献   

8.
Modeling nitrogen cycling in a coastal fresh water sediment   总被引:1,自引:0,他引:1  
Increased nitrogen (N) loading to coastal marine and freshwater systems is occurring worldwide as a result of human activities. Diagenetic processes in sediments can change the N availability in these systems, by supporting removal through denitrification and burial of organic N (Norg) or by enhancing N recycling. In this study, we use a reactive transport model (RTM) to examine N transformations in a coastal fresh water sediment and quantify N removal rates. We also assess the response of the sediment N cycle to environmental changes that may result from increased salinity which is planned to occur at the site as a result of an estuarine restoration project. Field results show that much of the Norg deposited on the sediment is currently remineralized to ammonium. A rapid removal of nitrate is observed in the sediment pore water, with the resulting nitrate reduction rate estimated to be 130 μmol N cm−2 yr−1. A model sensitivity study was conducted altering the distribution of nitrate reduction between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. These results show a 40% decline in sediment N removal as NO 3 reduction shifts from denitrification to DNRA. This decreased N removal leads to a shift in sediment-water exchange flux of dissolved inorganic nitrogen (DIN) from near zero with denitrification to 133 μmol N cm−2 yr−1 if DNRA is the dominant pathway. The response to salinization includes a short-term release of adsorbed ammonium. Additional changes expected to result from the estuarine restoration include: lower NO 3 concentrations and greater SO 4 2− concentrations in the bottom water, decreased nitrification rates, and increased sediment mixing. The effect of these changes on net DIN flux and N removal vary based on the distribution of DNRA versus denitrification, illustrating the need for a better understanding of factors controlling this competition.  相似文献   

9.
The seasonal dynamics of epilithic algae in a third order pristine forest stream were analyzed over a period of 2 years. Stream water was slightly acidic and nutrient poor. Encrusting, filamentous flocs, and filaments were found. Algal standing crop was high (mean concentration of Chl a 16–43 mg m–2) in spring. Filamentous algae contributed most to standing crop. Diatoms made up over 85% by number of the epilithon. Blue-greens were abundant upstream, and chlorophytes downstream. This shift was ascribed to greater light availability downstream. The community was more diverse during spring. Water current was the most important variable regulating epilithon structure. Total phosphorus (TP), orthophosphate (O-PO inf4 su3– ), silica (Si4+), nitrate (NO inf3 su– ) and conductance correlated negatively with flow rate. Green algae showed a positive correlation to phosphorus during low and stable flow. During rapid runoff, diatoms were the most resistant forms. Seasonal change in the epilithic community was mainly regulated by fluctuations in flow rate.  相似文献   

10.
Summary A double-chambered bioreactor based on a composite immobilized-cell gel layer/microporous membrane structure was applied to the continuous denitrification of high-nitrate water. Immobilized denitrifying bacteria (Pseudomonas denitrificans) were provided with separate flows of nitrate and carbon (C) nutrient, with no contamination of the treated water by cell leakage from the gel. Using acetate (7.5 mm) as a C source and a C/N ratio of 3 (mol/mol), specific denitrification rates ranging from 15 to 25 g NO inf3 sup– · h–1 · – cm–2 membrane surface (50–85 g NO inf3 sup– · h–1 · cm–3 gel) were obtained. The denitrifying activity remained stable for several months. At the flow rate used (10 cm3 · h–1), the effluents contained noticeable amounts of NO inf2 sup– ions but the treated water remained uncontaminated by the carbon nutrient. Most NO inf2 sup– ions disappeared from the treated water in a second reactor connected in series. When fed with an unchlorinated sludge supernatant as C nutrient, immobilized bacteria performed efficient denitrification of water for only 3 weeks. Diffusion experiments showed that acetate ions diffused much less rapidly than NO inf3 sup– or NO inf2 sup– ions through the composite structure. Further developments of the system are considered.  相似文献   

11.
Crowley  D. E.  Wu  C. L.  Gries  D.  Brünn  S.  Parker  D. R. 《Plant and Soil》2002,241(1):57-65
A laboratory method was developed that allows determination of in situ net nitrification with high sensitivity and at high temporal resolution. Nitrate in soils is quantitatively converted into nitrous oxide under strictly anaerobic conditions in the presence of 10 kPa acetylene by the soil endogenous denitrifier population, with the N2O detected by a gas chromatograph equipped with a 63Ni electron capture detector. Thus, even low net nitrification rates, i.e. small net increases in soil nitrate concentrations can easily be detected. Comparison of results using this method with results obtained using the classical in situ incubation method (buried bag soil incubation) revealed excellent agreement. Application of the new method allowed both determination of the seasonal pattern of net nitrification as well as correlation analysis between in situ NO and N2O flux rates and in situ net nitrification rates of the forest soils studied. Regardless of the forest site studied (spruce, spruce limed, beech), and during each year of a 3 years period (1995–1997), net nitrification varied strongly with season and was least during winter and greatest during summer. The long-term annual, mean rate of net nitrification for the untreated spruce site, the limed spruce site and the beech site were 1.54 ± 0.27 mg N kg–1 sdw d–1, 1.92 ± 0.23 mg N kg–1 sdw d–1 and 1.31 ± 0.23 mg N kg–1 sdw d–1, respectively. In situ rates of nitrification and NO and N2O emission were strongly correlated for all sites suggesting that nitrification was the dominate source of NO as well as N2O.  相似文献   

12.
4th instar Chironomus plumosus larvae (about 1000·m–2) were added to tubes containing sediment and overlying water. At a temperature of 20°C the larvae greatly increased the trasnport of silica, phosphorus and iron from the sediment to the water. Oxygen concentrations did not influence the exchange of silica. For two non-calcareous sediments the exchange of phosphorus and iron was much higher under anaerobic than under aerobic conditions while the difference was small for sediment from a hardwater lake. Exchange of inorganic nitrogen was little influenced by added chironomid larvae.  相似文献   

13.
The activity of nitrification was studied in the period of 1992 – 1994 in two grassland plots from the surroundings of a municipal waste incinerator. The soil parameters were fully comparable in both plots and the soils differed in the level of polychlorinated biphenyls (PCBs). The concentration of PCBs found in Klajdovka-control plot (KL): 4.4 ng gdry soil –1 can be regarded as a background value, while the polluted plot, Bílá Hora (BH), contained increased amount of PCBs: 14.0 ng gdry soil –1.The following parameters of nitrifying activity were determined: field concentrations of Ninorg species, mineralization potentials, nitrifying activity during long-term laboratory incubations, and the potential activity of both ammonium and nitrite oxidizers in short-term incubations in soil slurries. Simultaneous application of all these methods appeared to be very suitable for reliable assessment of nitrifying activity in the field.In the case of the polluted plot, the abnormal accumulation of nitrite was observed both in the field (e.g. in September 1992: BH-656.8 ng NO inf2 -N gdry soil –1; KL-208.2 ng NO inf2 -N gdry soil –1) and in the laboratory incubations. Furthermore, the capability of the polluted plot to nitrify higher amount of ammonium nitrogen appeared to be significantly reduced due to detrimental changes in the activity of nitrite-oxidizing community. In contrast to the nitrification, the mineralization potential did not differ between the plots throughout the sampling period.  相似文献   

14.
Summary Inhibitory effect of potassium chloride on nitrification of ammonium sulfate and urea in acid, neutral and calcareous soils was observed in an incubation study. In acidic soil, NO 3 –N production in soil treated with urea was retarded by addition of KCl. NO 3 –N concentration was much less even in comparison to control where ammonium sulfate and KCl were added together which might be due to cumulative effect of Cl and SO 4 –2 ions. In neutral and calcareous soils, nitrification inhibition was less conspicuous.  相似文献   

15.
Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia)   总被引:1,自引:1,他引:0  
Uptake of NH inf4 sup+ -N by streambed biota of mountain brooks was studied in the alpine zone of the High Tatra Mountains. Experiments were performed involving in situ dosing of ammonium directly to the acidified stream and incubations of ammonium and streambed bryophytes in enclosures within a range of pH from 4.45 to 8.10.NH inf4 sup+ -N uptake length decreased with decreasing stream discharge, while comparable values of discharge-normalized uptake lengths were found during two in situ experiments.Maximum uptake rates of NH inf4 sup+ -N obtained during the incubation of bryophytes (6 to 11 mg m–2 h–1) were comparable with results of two in situ experiments (8 and 12 mg m–2 h–1). The average NH inf4 sup+ -N uptake rates observed during incubations lasting 3 to 5 hours (4.3 mg m–2 h–1) were not related to the pH of stream water. Nitrification of about 50% of the NH inf4 sup+ -N added was observed in non-acidified streams, but was negligible in acidified streams. Significant photoinhibition of nitrification was observed in non-acidified streams during enclosure experiments.  相似文献   

16.
Rates of nitrification and organic C production were determined in batch and chemostat cultures of marine nitrifying bacteria; two NH 4 + -oxidizing species and one NO 2 -oxidizing spezies. With increasing age in batch cultures and with decreasing flow rates in chemostats, cellular organic C and N concentrations declined while the intracellular ratio of C:N remained constant. With decreasing flow rates in chemostats, there was a reduction in (a) carboxylating enzyme activity per unit of cellular organic C (the potential for chemoautotrophic CO2 fixation), and (b) the yield of organic C. For both NH 4 + and NO 2 oxidizers, rates of nitrification and C yield were lowest at very slow chemostat growth rates, when compared with optimal growth rates in batch cultures. For both NH 4 + and NO 2 -oxidizing species, the stoichiometric relationship between nitrification and organic C production did not remain constant and appeared to be dependent on the availability of the inorganic N substrate. The organic C yield from NH 4 + oxidation and hence the free energy efficiency declined with increasing age in batch cultures and with decreasing flow rates in chemostats. The C yield from NO 2 oxidation and the free energy efficiency at slow chemostat growth rates was also lower than that at the optimal growth rate in batch culture.  相似文献   

17.
The soil of flooded riparian zones, the rhizosphere of riparian plants, biofilms at solid surfaces in the river, and the surface layer of sediments all constitute important environments for the oxidative or reductive transformations of inorganic nitrogen compounds. The exact microzonation and coupling of the processes have recently been studied intensively with 15N enrichment methods and microsensors for NH4+, NO2, NO3, and N2O. Microsensor analyses of gradients in sediments and biofilms have shown that nitrate production takes place in an aerobic surface zone that has a maximum thickness of a few millimeters in most shallow-water sediments and may be as thin as 100 μm in biofilms from very eutrophic environments. In the anoxic zone, denitrification is also concentrated in a zone of maximum a few millimeters, and typically half of the nitrate produced by nitrification is denitrified while the other half escapes to the water. The supply of nitrate from above is primarily controlled by the oxic layer acting as a diffusion barrier, and therefore denitrification is generally a linear function of the nitrate concentration in the water. The overlying water is thus a much more important source of nitrate for denitrification if the concentration is high. The rate and location of denitrification are also affected by bioturbating animals, benthic microphytes, plants, and bacteria performing dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

18.
Nitrate sorption in the profile of an acid soil   总被引:6,自引:0,他引:6  
Sorption of NO inf3 sup– by different horizons of a highly weathered, acid tropical soil was measured in laboratory batch experiments. Sorption was found to increase with depth, ranging from small amounts in the 0–15 cm layer to amounts that would be roughly equivalent to 25 to 50% of the NO inf3 sup– in the 90–120 cm layer at water and NO inf3 sup– contents commonly found under field conditions. Calculations, based on sorption isotherms, demonstrated how sorption may be important for managing N in a tropical acid soil. Sorption of Cl was also found in the range of 0.1 and 2.0 mol m–3. In this range of concentrations sorption of NO inf3 sup– and chloride were found to be independent, suggesting that anion exchange sites were far from saturated.Contribution from the Department of Soil, Crop and Atmospheric Sciences, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853. SCAS paper No. 1726. This research is part of the TropSoils program.Contribution from the Department of Soil, Crop and Atmospheric Sciences, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853. SCAS paper No. 1726. This research is part of the TropSoils program.  相似文献   

19.
A combination of laboratory and field experiments were carried out to evaluate nitrate(NO 3 t- ) removal during stream transport in a first-order agricultural drainage stream. Intact stream sediment cores overlain with stream and NO 3 -amended stream water indicated NO 3 losses averaging 93 — 353 mg m–2 day–1, with NO 3 concentration exerting a primary control on loss rate. Isotopic data indicated enrichment of NO 3 - 15N over time as NO 3 concentrations decreased, indicating a denitrification loss. Field experiments were designed to evaluate dilution of streamwater with low-NO 3 groundwater in addition to other NO 3 removal processes during transport. A series of bromide tracer and NO 3 - addition experiments were carried out in the field; groundwater dilution dominated the downstream NO 3 concentration trends, accounting for all observed decreases in NO 3 concentration. Isotopic data did not point to denitrification downstream as a major NO 3 removal process. This apparent disparity between simulated laboratory and in-situ stream removal rates appears to be a function of the hydrological processes controlling exchanges between stream bottom sediments and the overlying water. These results suggest that caution must be exercised in extrapolating potentials for NO 3 removal measured in laboratory experiments to the field, as these rates could be overestimated in some watersheds.  相似文献   

20.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号