首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
M. Teo 《Applied Surface Science》2005,252(5):1293-1304
A remote microwave-generated H2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form AlOSi interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of AlOSi interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased AlOSi bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of AlOSi interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.  相似文献   

2.
Poly(dimethylsiloxane) (PDMS) has been used extensively for microfluidic components and as substrates for biological applications. Since the native nature of PDMS is hydrophobic it requires a functionalization step for use in conjunction with aqueous media. Commonly, oxygen plasma treatment is used for the formation of hydrophilic groups on the surface. However, the hydrophilic nature of these surfaces is short lived and the surfaces quickly revert back to their original hydrophobic state. In this work, branched-polyethylenimine (b-PEI) was used for long term modification of plasma treated PDMS surface. Contact angle, X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM) were used for characterization of the modified surfaces and their stability with time was studied. The results obtained demonstrate that comparatively higher stability, hydrophilic, positively charged surfaces can be obtained after b-PEI treatment. These b-PEI treated PDMS surfaces can be used as fluidic channels for the separation of molecules as well as a substrate for the adherence of bio-molecules or biological cells.  相似文献   

3.
The surface of medical grade polyesters was modified to impart hydrophilic character for attachment to bacterial synthesized cellulose to produce a vascular prosthetic device. The polyesters were treated with UV/ozone, air plasma, and nitrogen plasma for various lengths of time. The unmodified and modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and advancing contact angle measurements. The surfaces were then coated with bacterial produced cellulose to study adhesion properties through tensile testing (peel testing). UV/ozone and plasma treatment XPS results indicated an increase in the oxygen concentration in the form of CO(H) on the treated polyester surfaces. The treatment time to reach steady state in the case of air and nitrogen plasmas took the order of seconds, while 7 min and longer were required for UV/ozone treatment. Peel strength tests to measure adhesion of modified polyester to cellulose reached their maximum values when the CO(H) concentrations were at the highest level. It was also at this level that the contact angle measurements showed no further decrease.  相似文献   

4.
Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -CO functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.  相似文献   

5.
李明宇  薛懿  罗根  张超 《中国光学》2013,6(1):103-110
提出采用不可逆封合技术来解决可逆封合的平面光波导生物传感器的微流通道在注入液体压力较大时会出现漏液的问题。分别采用等离子体法、氧化法、紫外灯照射法和紫外胶法实现了聚二甲基硅氧烷(PDMS)和绝缘材料上的硅(SOI)波导的不可逆封合。首先,采用4种实验方案分别处理PDMS和SOI波导表面,测试了经上述几种方法处理后微流通道与波导的粘合能力的强弱。然后,定量分析PDMS和SOI波导的封合效果。最后,经过实验比较得出用等离子体处理PDMS和SOI波导表面得到的不可逆封合效果最好的结论。文中也讨论了其他实验因素对粘合程度的影响。  相似文献   

6.
Surface immobilization of poly(ethylene glycol) (PEG) is an effective method to produce a material surface with protein repulsive property. This property could be made permanent by using covalent grafting of the PEG molecules onto material surfaces. In this study, self-assembled monolayers (SAMs) of PEG on silicon-containing materials (silicon chip and glassplate) were obtained through a one-step coating procedure of one kind of silanated PEG molecules made through the reaction between monomethoxy PEG and 3-isocyanatopropyltriethoxysilane. Atomic force microscopy (AFM) and water static contact angle measurement were employed to investigate the surface topography and wettability of the PEGylated material surfaces. The changes in the topography and the water contact angle of the surfaces with time of incubation in PBS solution were also measured. The results revealed that stable and uniform self-assembled monolayers of PEG could be formed on silicon or glass surfaces by simply soaking the substrates in the solution of silanated PEGs. The covalent coupling of PEGs to the substrates was also confirmed. In order to evaluate the stability of the SAMs, blood compatibility of the modified glassplate surface was evaluated by measuring full blood activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), as well as by scanning electron microscopy (SEM) analysis of the appearance of adherence and denaturation of blood platelets onto the glassplate. The silanated PEGs were shown to have good effect on the protein-repulsion as well as haemocompatibility of the substrates.  相似文献   

7.
Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O2 and H2O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many CC bonds are transformed into more polar oxygen containing functional groups.  相似文献   

8.
The influence of long-distance oxygen plasma sterilization on surface properties of substrate material, i.e., medical poly(tetrafluoroethylene) (PTFE), and aging effect of these sterilized PTFE film surfaces were investigated by contact angle measurement, mass loss determination, scanning electron microscopy (SEM) as well as bacterial adhesion and platelet adhesion measurements in vitro, respectively. The changes in chemical structure of sterilized PTFE film were followed using X-ray photoelectron spectroscopy (XPS). As a result of plasma sterilization oxygen-containing functional groups (such as CO and CO), especially the CO group are introduced into PTFE surfaces, and thus pronounced increases of surface free energy and surface wettability are presented when the sample positions are within 0-40 cm. The film surface wettability degrades little as the aging time continued as long as 190 days. At the same time, the minimal surface degradation and damage occur on the sterilized PTFE when the sample position is at 40 cm. Moreover, the antibacterial adhesion and blood compatibility of sterilized PTFE surface are enhanced and the optimal effects are also obtained at 40 cm. The essential reason may be due to the optimal equilibrium between surface wettability and surface damage, which is achieved at 40 cm. Overall, of the surface properties of long-distance oxygen plasma sterilized PTFE analyzed, the sterilization at 40 cm is optimal.  相似文献   

9.
Acrylic acid (AAc) was grafted onto the surfaces of polydimethylsiloxane (PDMS) films using a two-step oxygen plasma treatment. The first step of this method included oxygen plasma pretreatment of the PDMS films, immersion in AAc, and drying. The second step was carried out by plasma polymerization of the preadsorbed reactive AAc on the surfaces of the dried pretreated films. Then chitosan and gelatin were immobilized onto the poly(acrylic acid) grafted silicone through covalent bonding. The films were characterized by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. Fibroblast cells (L929) were cultured onto the chitosan- and gelatin-immobilized poly(acrylic acid)-grafted silicone and poly(acrylic acid)-grafted silicone films. It was observed that the chitosan- and gelatin-immobilized surfaces showed significant cell growth in comparison with poly(acrylic acid)-grafted silicone samples. It seems that chitosan- and gelatin-immobilized surfaces may have an excellent potential to be used as a derm-like matrix.  相似文献   

10.
Poly(ethylene terephthalate) (PET) films were treated with CF4 plasma immersion. The samples were processed at different RF powers and treatment time. The surface modification of PET films was evaluated by water contact angle (CA), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). Decrease in contact angle of both sides of PET films was observed under mild treatment conditions. However, as raising treatment power and/or time, the change in contact angle between the two sides of PET films was different. The relatively hydrophobic and hydrophilic surfaces were being in situ formed on the two sides of PET films, respectively. And the extreme values of water contact angle reached 108.63 and 7.56°, respectively. XPS analyses revealed that there was a substantial incorporation of fluorine and/or oxygen atoms in both side surfaces. The relative chemical composition of the C (ls) spectra's showed the incorporation of non-polar fluorine-based functionalities (i.e. CFCFn, CF2 or CF3 groups) and polar oxygen-based functionalities (i.e. COOH or OH groups) in the surfaces. Correlation between the plasma parameters and the surface modification of PET films is also discussed.  相似文献   

11.
Titanium dioxide (TiO2) films were prepared on poly(dimethylsiloxane) (PDMS) substrate by direct current (DC) reactive sputtering to change surface physical properties of PDMS. The effects of the changes were investigated by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, water contact angle measurements and protein adsorption tests. Improved wettability and reduced adsorption properties were observed on PDMS surface coated TiO2 films.  相似文献   

12.
The laser annealed Si(111) 1×1 surface with chemisorbed oxygen at submonolayer coverages and its irradiation with a ruby laser has been studied with ultraviolet photoelectron spectroscopy and high-resolution electron-energy-loss spectroscopy. The surface oxide which forms directly upon O2 exposure is found to be similar to that which forms on the Si(111) cleaved 2×1 and the 7×7 reconstructed surfaces. Ruby-laser irradiation converts this surface oxide at submonolayer coverages into clumps of silicon dioxide and regions of clean silicon. Both surface oxides show electronic transitions in the visible and ultraviolet energy region which may be related to known network and point defects in vitreous and crystalline silicon dioxide.  相似文献   

13.
Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH4 and C2F6 gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72° and 105°, respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of ∼165° and contact angle hysteresis below 2° with water drops rolling off from those surfaces while the same substrates showed contact angle of 135° with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of ∼36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.  相似文献   

14.
用自洽场离散变分Xα(SCF-Xα-DV)量子化学计算方法研究了氮氧化硅及氧化硅玻璃,讨论了氮原子取代氧原子之后在结构、性能与化学键等方面的变化规律。计算表明氮氧化硅与氧化硅玻璃之间在性能上的差异,主要不是由Si-N和Si-O键的伸缩力常数之间的差异所引起的,也不是由Si-N和Si-O键的离子键强度之间的差异所引起的。Si-N共价键比Si-O共价键强,是N-Si-N键弯曲力常数比O-Si-O键大的主要原因,也与氮氧化硅玻璃比氧化硅玻璃具有更好的化学稳定性和更高的扬氏模量的实验结果一致。  相似文献   

15.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

16.
The surfaces of nanostructured, porous SiOx/Si (air-oxidized Si) and SiOx thin films, deposited by excimer laser ablation in He and He + O2 gas ambients, respectively, have been modified by the deposition of a monofunctional organosilane. They were characterized using photoacoustic Fourier-transform infrared (FTIR) X-ray photoelectron (XPS) spectroscopies, and field-emission scanning electron microscopy (FESEM). Photoacoustic FTIR analysis indicates that the organosilane has hydrolyzed to form a silanol, which has chemically reacted with SiOx through its surface silanol (SiOH) group, to form siloxane (SiOSi) structures. An enhanced IR spectral signal is found, due to the expansion and contraction of both the pores of the solid and the gas within them.  相似文献   

17.
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer.In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.  相似文献   

18.
At first, X-ray photoelectron spectroscopy (XPS) analyses of reference and carbon dioxide plasma treated polyethylene terephthalate (PET) were carried out. Significant chemical modifications were outlined in the treated PET surface in comparison with the reference one. The formation of new oxygenated groups was evidenced. These modifications heighten the level of interactions between the polymer substrate and the deposited coating.In a second stage, zinc oxide thin films were elaborated by r.f. magnetron sputtering from a ceramic target and with a reactive gas (mixture of argon-1% oxygen) under optimised conditions on CO2 plasma treated PET. The interfacial chemistry between the plasma treated PET and the zinc oxide was also studied by XPS. The line shape changes in the high-resolution core level spectra of carbon C1s, oxygen O1s, and zinc (Zn2p3/2, Zn3p), with the progressive deposition of zinc oxide coatings being recorded. The obtained spectra were fitted to mixed Gaussian-Lorentzian components using XPS CASA software.An interaction scheme between the zinc oxide thin layer and its polymer substrate, in the first stage of deposition, was proposed and checked by corroborating the findings of the different XPS spectra and their decompositions. It suggests the formation of ZnOC complexes at the interface, which are promoted by an electron transfer from zinc to oxygen in oxygenated species, mainly alcohol groups, generated by the CO2 plasma treatment of PET.  相似文献   

19.
M. Waris 《Applied Surface Science》2006,252(20):7327-7330
This work demonstrates anodic bonding of Zerodur glass having very low co-efficient of thermal expansion (CTE) to Si, Zerodur glass to thermally grown silicon dioxide on silicon and Pyrex glass to Ge. Bonding results, using point cathode contact and plate cathode contact configurations, are discussed. Bonding parameters, i.e. applied dc voltage, temperature and bonding time were determined. Heating and cooling rates for crack-free bonding of Zerodur glass were also determined.  相似文献   

20.
We report on the fabrication of pentacene thin-film transistors (TFTs) utilizing a spun methyl siloxane-based spin-on-glass (SOG) dielectric and show that these devices can give a similar electrical performance as achieved by using pentacene TFTs with a silicon dioxide (SiO2) dielectric. To improve the electrical performance of pentacene TFTs with the SOG dielectric, we employed a hybrid dielectric of an SOG/cross-linked poly-4-vinylphenol (PVP) polymer. The PVP film was deposited onto the spun SOG dielectric prior to pentacene evaporation, resulting in an improvement of the saturation field effect mobility (μsat) from 0.01 cm2/(V s) to 0.76 cm2/(V s). The good surface morphology and the matching surface energy of the SOG dielectric that was modified with the polymer thin film allow the optimized growth of crystalline pentacene domains whose nuclei are embedded in an amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号