首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Using a low-temperature wafer bonding process, InP substrates are bonded to silicon-on-insulator (SOI) substrates at 220 °C. A combination of oxygen plasma and chemical treatment results in a direct contact bonding at room temperature. After the bonding process at 220 °C for 45 min, removal of the Si handle substrate by sacrificial etching of the buried oxide layer in SOI, results in a thin membrane of Si robustly bonded to InP. The thin Si membrane bonded to InP shows uniformly bonded interface under high-resolution electron microscopy. Micro-Raman analysis has also been carried out to study the bonded interface. I-V characteristics of the bonded structures suggest that such bonding and layer transfer processes are suitable for device integration.  相似文献   

2.
The effect of a homogenous loaded stress on the bonding quality of silicon wafer pairs was investigated by employing a Nano-Imprint System and a homogenous plane-stress applied over the entire surface area of pre-cleaned wafers. In addition, the effects of variations in the applied homogenous stress (1, 10, 100, 500 psi) on the interface energy of the bonded pairs were examined using a dynamic blade insertion (DBI) method. Infrared imaging was used to evaluate the quality of the bonded interface of each bonded pair immediately after the bonding process and after allowing the bonded pairs to rest at room temperature for 80 h after bonding. The results indicated that the homogenous loading with the Nano-Imprint System further improved the bonding condition of wafer pairs that had been pre-bonded using an anodic bonder. Furthermore, the bonded pairs exhibited almost identical interfacial energies of about 0.2 Jm−2 when the homogenous stress was varied from 1 psi to 500 psi, which clearly indicates that the interfacial energy of bonded wafers is independent of the amount of stress applied by the homogenous loading process.  相似文献   

3.
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail.  相似文献   

4.
Tin oxide (SnO2) thin films were deposited by radio frequency (RF) magnetron sputtering on clean corning glass substrates. These films were then annealed for 15 min at various temperatures in the range of 100-500°C. The films were investigated by studying their structural and electrical properties. X-ray diffraction (XRD) results suggested that the deposited SnO2 films were formed by nanoparticles with average particle size in the range of 23-28 nm. XRD patterns of annealed films showed the formation of small amount of SnO phase in the matrix of SnO2. The initial surface RMS roughness measured with atomic force microscopy (AFM) was 25.76 nm which reduces to 17.72 nm with annealing. Electrical resistivity was measured as a function of annealing temperature and found to lie between 1.25 and 1.38 mΩ cm. RMS roughness and resistivity show almost opposite trend with annealing.  相似文献   

5.
The pulsed laser deposition technique was used to produce zinc oxide thin films onto silicon and Corning glass substrates. Homogeneous surfaces exhibiting quite small Root Mean Square (RMS) roughness, consisting of shaped grains were obtained, their grain diameters being 40-90 nm at room temperature and at 650 °C growth respectively. Films were polycrystalline, even for growth at room temperature, with preferential crystallite orientation the (0 0 2) basal plane of wurtzite ZnO. Temperature increase caused evolution from grain to grain agglomeration structures, improving crystallinity. Compressive to tensile stresses transition with temperature was found while the lattice constant decreased.  相似文献   

6.
In this study, we examined the effect of high-temperature oxidation treatment on the SiGe epitaxial thin films deposited on Si substrates. The X-ray diffraction (XRD), atomic force microscopy (AFM), and nanoindentation techniques were employed to investigate the crystallographic structure, surface roughness, and hardness (H) of the SiGe thin films, respectively. The high-temperature oxidation treatment led to Ge pileup at the surface of the SiGe thin films. In addition, strain relaxation occurred through the propagation of misfit dislocations and could be observed through the cross-hatch pattern (800-900 °C) and SiGe islands (1000 °C) at the surface of the SiGe thin films. Subsequent hardness (H) measurement on the SiGe thin films by continuous penetration depth method indicated that the phenomenon of Ge pileup caused a slightly reduced H (below 50 nm penetration depth), while relaxation-induced defects caused an enhanced H (above 50 nm penetration depth). This reveals the influence of composition and defects on the structure strength of high-temperature oxidation-treated SiGe thin films.  相似文献   

7.
B.R. Conrad 《Surface science》2009,603(3):L27-13358
Ultra-thin oxide (UTO) films were grown on Si(1 1 1) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 ± 0.05 nm, indicating “standing up” pentacene grains in the thin film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (0 0 1) plane (ab plane) is a = 0.76 ± 0.01 nm, b = 0.59 ± 0.01 nm, and γ = 87.5 ± 0.4°. The films are unperturbed by the UTO’s short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ∼0.1 nm, and the structural correlation exponent of ∼1.  相似文献   

8.
Silicon-on-insulator (SOI) wafers are commonly used to design microelectronics, energy conversion, and sensing devices. Thin solid films on the surfaces of SOI wafers have been a subject of numerous studies. However, SOI wafers modified by self-assembled monolayers (SAMs) that can also be used as functional device platforms have been investigated to a much lesser extent. In the present work, tert-butoxycarbonyl (t-boc, (CH3)3-C-O-C(O)-)-protected 1-amino-10-undecene monolayers were covalently attached to a H-terminated SOI (1 0 0) surface. The modified wafers were characterized by X-ray photoelectron spectroscopy to confirm the stability of the SAM/Si interface and the integrity of the secondary amine in the SAM. The transmission electron microscopy investigation suggested that this t-boc-protected 1-amino-10-undecene SAM produces atomically flat interface with the 2 μm single crystalline silicon of the SOI wafer, that the SiOx and both available Si/SiOx interfaces are preserved, and that the organic monolayers are stable, with apparent thickness of 1.7 nm, which is consistent with the result of the density functional theory modeling of the molecular features within a SAM.  相似文献   

9.
Indium oxide films are deposited by pulsed laser deposition in the presence of oxygen atmosphere, on different substrates, namely GaAs, Si, quartz, and glass. The structural, morphological, and interface characteristics are studied. Cubic In2O3 phase is confirmed by high resolution X-ray diffraction measurements. While the films on Si, glass, and quartz substrates are polycrystalline, the films on GaAs exhibit a preferred orientation along (2 2 2) plane. The structure and crystalline nature of the films are also confirmed by Raman spectroscopy. Furthermore, Raman spectra show the appearance of gallium oxide modes arising due to Ga diffusion from the substrate. The morphology of the films deposited on different substrates is studied by atomic force microscopy and rms roughness values are obtained. A two-dimensional power spectral density analysis has been used to calculate the growth exponent (α). A value of α > 1 (α < 1) for films grown on GaAs/Si (quartz/glass) substrates suggests that the growth on crystalline substrates is governed by the linear diffusion model, whereas the growth on amorphous substrates follows the dynamic scaling behaviour. UV-visible study shows a high optical transmittance of >90% and a band gap value of 3.64 and 3.79 eV for the films deposited on quartz and glass substrates, respectively.  相似文献   

10.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

11.
Bidirectional ellipsometry has been developed as a technique for distinguishing among various scattering features near surfaces. The polarized angular dependence of three-dimensional light-scattering by the nanoparticles on thin film wafer is calculated and measured. These calculations and measurements yield angular dependence of bidirectional ellipsometric parameters for out-of-plane light-scattering. The experimental data show good agreement with theoretical predictions for different nanoparticle diameters and thin film thicknesses when bidirectional ellipsometry was employed to measure nanoparticles (60 nm, 100 nm, and 200 nm) on Si wafers with different film thicknesses of 2 nm, 5 nm, and 10 nm. Not only are the diameters of the nanoparticles determined, but also the film thicknesses can be calculated and distinguished from the measurement results. Additionally, the results indicate that improved accuracy is possible for measurements of scattering features from nanoparticles and thin films.  相似文献   

12.
Strain relaxation of the epitaxial SiGe layer and Ge diffusion during nickel silicidation by rapid thermal annealing the structure of Ni(≅14 nm)/cap-Si(≅26 nm)/Si0.83Ge0.17/Si(0 0 1) at the elevated annealing temperatures, TA, were investigated by X-ray diffraction analyses of high-resolution ω-2θ scan and reciprocal space mapping. The analyses showed a much larger strain relaxation at a lower TA and a reduction in Ge content in the SiGe layer of Ni/SiGe/Si(0 0 1) after thermal annealing compared to the case of cap-Si/SiGe/Si(0 0 1). The results indicate that the strain relaxation of the SiGe layers in NiSi/SiGe/Si(0 0 1) is related to the phenomena of NiSi agglomeration and penetration into the SiGe layer during silicidation at elevated anneal temperatures ≥750 °C. At elevated TA ≥ 750 °C, Ge diffused into the intact cap-Si area during silicidation.  相似文献   

13.
Work function, valence band and 28Si secondary ion intensity variations from various Si substrates sputtered by 1 keV Cs+ at 60° were measured. Oxide free Si wafers and native oxide terminated wafers did not reveal any appreciable valence band variations close to the Fermi edge. Their work functions however, decreased substantially with an exponential trend noted between this and Si secondary ion intensities from the O free Si wafer. This is consistent with the electron tunneling model which assumes a resonance charge transfer process. Native oxide terminated wafers exhibited deviations from this exponential trend, while Si wafers with thicker oxides revealed the growth of sub-band features in the valence band spectra on sputtering with Cs+. These features, may partially, if not fully, explain the Cs+ induced enhancement effect noted on SiO2 substrates where work function based models are not applicable.  相似文献   

14.
ZnO was deposited on bare Si(1 0 0), as-deposited, and annealed ZnO/Si(1 0 0) substrates by hydrothermal synthesis. The effects of a ZnO buffer layer and its thermal annealing on the properties of the ZnO deposited by hydrothermal synthesis were studied. The grain size and root mean square (RMS) roughness values of the ZnO buffer layer increased after thermal annealing of the buffer layer. The effect of buffer layer annealing temperature on the structural and optical properties was investigated by photoluminescence, X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Hydrothermal grown ZnO deposited on ZnO/Si(1 0 0) annealed at 750 °C with the concentration of 0.3 M exhibits the best structural and optical properties.  相似文献   

15.
In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO2−x formed by the residual Ti oxidizing.  相似文献   

16.
Multilayered thin films of In2O3 and SnO2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser (λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported.  相似文献   

17.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

18.
The properties of ultra-thin oxide/Si and very-thin oxide/Si structures prepared by wet chemical oxidation in nitric acid aqueous solutions (NAOS) and passivated in HCN aqueous solutions were investigated by electrical, optical and structural methods. n- and p-doped (1 0 0) crystalline Si substrates were used. There were identified more types of interface defect states in dependence on both post-oxidation treatment and passivation procedure. On samples prepared on n-type Si, continuous spectrum of defect states of 0.05-0.2 eV range and discrete defect traps, ∼ECB − 0.26 eV and ∼ECB − 0.39 eV, were found. All mentioned defects are related with various types of Si dangling bonds and/or with SiOx precipitates. Post-metallization annealing of investigated MOS structures reduced the interface defect density and suppressed the leakage currents. It did not change spectral profile of interface defect states in the Si band gap. In addition, there are presented following two optical phenomena: relation between amplitude of photoluminescence signal of NAOS samples and parameters of chemical oxidation process and quantum confinement effect observed on samples containing Si grains of size less as ∼2 nm.  相似文献   

19.
The oxidation of SiGe film epitaxial grown on top of SOI wafers has been studied. These SiGe/SOI samples were oxidized at 700, 900, 1100 °C. Germanium atoms were rejected from SiGe film to SOI layer. A new Si1−xGex (x is minimal) layer formed at SiGe/Si interface. As the germanium atoms diffused, the new Si1−xGex (x is minimal) layer moved to Si/SiO2 interface. Propagation of threading dislocation in SiGe film to SOI substrate was hindered by the new SiGe/Si interface. Strain in SOI substrate transferred from SiGe film was released through dislocation nucleation and propagation inner. The relaxation of SiGe film could be described as: strain relaxed through strain equalization and transfer process between SiGe film and SOI substrates. Raman spectroscopy was used to characterize the strain of SiGe film. Microstructure of SiGe/SOI was observed by transmission electron microscope (TEM).  相似文献   

20.
In order to evaluate the strain stability, arrays of strained Si/SiGe nano-stripes and nano-pillars were fabricated by Electron-Beam Lithography (EBL) and Reactive-Ion Etching (RIE). The strain relaxation in the patterned strained Si on SiGe-on-insulator (SGOI) was investigated by high-resolution UV micro-Raman spectroscopy. The Raman measurements before and after patterning indicate that most of the strain in the top strained Si is maintained until scaling down to 300 nm, and relaxation of <15% is observed in pillars with a dimension of 150 nm × 150 nm. In the nano-patterned heterostructure strained Si/SiGe, the observed relaxation is small, which is mainly attributed to the fully relaxed and dislocation-free SiGe virtual substrate fabricated by modified Ge condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号