首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
龙门山前山断裂北段晚第四纪活动性研究   总被引:16,自引:5,他引:16  
5月12日汶川8.0级地震沿龙门山断裂带中央断裂映秀—石坎段、前山断裂白鹿—汉旺段形成了典型的逆断层-褶皱地震地表形变带,两侧构筑物遭受了毁灭性的破坏。中央断裂地震地表形变带突破了以往所认识的断裂活动分段边界,向北扩展了约60km,余震亦具有从中段向北段迁移的趋势。龙门山断裂带北段在此次地震中地表有什么影响或破坏?该段晚第四纪是否有过地震活动?在前人工作的基础上,我们对前山断裂北段的地震地表特征和晚第四纪活动性进行了详细的地质地貌调查,并重点选择2个影像线性特征清晰、震害较强烈的疑似地点进行了探槽揭露,以期为解决这些问题以及灾后重建积累翔实可靠的基础资料及获得相应的初步认识。主要结论是:前山断裂北段地质地貌、构造、5月12日汶川8.0级地震的地表表现等与其南侧的灌县-安县断裂(中段)均存在显著差异,晚第四纪活动迹象不明显,前山断裂晚第四纪活动段可能终止在永安镇往南一带;永安镇一带前人认为的"活动断裂陡坎"应为侵蚀河岸  相似文献   

2.
滇西北通甸-巍山断裂中段的晚第四纪滑动速率   总被引:2,自引:0,他引:2  
通甸-巍山断裂属于红河断裂带的分支断裂,目前对该断裂中段的晚第四纪活动特征研究较少。野外地质地貌调查和年代学研究结果表明,通甸-巍山断裂中段是以右旋走滑运动为主,兼有张性正断的全新世活动断裂,其最新活动时代距今约2.2ka。晚更新世中晚期以来断裂中段平均水平滑动速率为1.25mm/a,全新世晚期以来垂直运动趋于增强。该研究不仅为该断裂的地震危险性评价工作提供了基础资料,而且有助于理解川滇菱形块体西南边界构造变形的空间分配特点  相似文献   

3.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

4.
龙陵-瑞丽断裂(南支)北段晚第四纪活动性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳  相似文献   

5.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

6.
中国新疆天山博阿断裂晚第四纪右旋走滑运动特征   总被引:13,自引:3,他引:13       下载免费PDF全文
沈军  汪一鹏  李莹甄  姜慧  向志勇 《地震地质》2003,25(2):183-194,T001
利用遥感资料 ,通过野外实地考察并结合气候地貌事件的分析 ,对斜切北天山、长逾70 0km的博阿断裂 (博罗科努 -阿齐克库都克断裂 )的右旋走滑运动进行了定量研究。该断裂分为西部NW向断裂和东部NWW向断裂。西部NW向断裂长近 2 5 0km ,向西北延伸进入哈萨克斯坦 ,右旋走滑速率可达 5mm/a ;由 4~ 5个断裂段组成 ,其上发育 3~ 4条古地震或历史地震形变带 ,显示具有发生 7.5级地震的能力。东部NWW向断裂右旋走滑速率 1~ 1.4mm/a ;其上发现小规模古地震形变带 ,显示具备发生 7级左右地震的能力。该断裂与山前的逆冲推覆构造之间构成典型的挤压区应变分配形式 ,即在斜向挤压作用下 ,变形分配为山前的逆冲推覆构造和山内的走滑断裂  相似文献   

7.
程绍平  杨桂枝 《地震地质》1996,18(4):289-300
大同-阳原盆地南缘断裂带是北京西北~山西北部盆-岭区的一条最大的断层。晚第四纪断层崖高度和高度分布型式把断裂带分为西南和东北两个段落。该断裂带在山前带和山麓坡的构造地貌、微地文期演化历史方面存在着明显的分段变异。构造地貌过程的速度和断层习性差异,以及段落边界的重叠断层特征,是构造地貌变异的直接原因  相似文献   

8.
陈文彬  徐锡伟 《地震地质》2006,28(2):319-324
阿拉善地块南缘发育了由5条走向近EW、向西收敛、向东撒开的断裂组成的断裂束,每条断裂长度一般>100km,控制第四纪盆地呈EW向长条状展布,卫片上线性影像清晰,晚第四纪以来表现出左旋走滑活动的特点。断裂束西段的金塔南山断裂与阿尔金断裂带东段的宽滩山段趋于交会,并与文殊山构造隆起之间构成构造转换关系。分析认为金塔南山断裂以及整个阿拉善南缘断裂束是阿尔金断裂左旋运动的东延部分,断裂束在平面上“帚状”的、向东撒开的构造样式有利于走滑运动量的分解、消减和吸收,符合走滑断裂末端的构造特点。阿拉善南缘断裂束的左旋走滑活动有可能是阿尔金断裂带进一步向东扩展的结果,其时代可能发生于早更新世末—中更新世初  相似文献   

9.
The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.  相似文献   

10.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

11.
Sanwei Shan Fault is located in the north of Tibet, which is a branch of eastern segment of Altyn Tagn fault zone. This fault is distributed along the boundary of fault facet and the Quaternary, with the total length of almost 150km. The fault is a straight-line structure read from the satellite image. Based on the spatial distribution of the fault, three segments are divided, namely, Xishuigou-Dongshuigou segment, Dongshuigou-West Shigongkouzi segment and West Shigongkouzi-Suangta segment, these three segments are distributed by left or right step.Though field microgeomorphology investigation along Sanwei Shan Fault, it has been found that two periods of alluvial-pluvial fans are distributed in front of Sanwei Shan Mountain, most of which are overstepped. Comparing the distribution of alluvial-pluvial fans with their formation age in the surrounding regions, and meanwhile, taking the results of optical stimulated luminescence(OSL) dating, it's considered that the formation age of the older alluvial-pluvial fans, which are distributed in northern Qilian Shan, inside of Hexi Corridor and western Hexi Corridor(including the Sanwei Shan piedmont fans), is between later period of late Quaternary and earlier period of Holocene. The gullies on the older fan and ridges have been cut synchronously. The maximum and minimum sinistral displacement is 5.5m and 1.7m, but majority of the values is between 3.0~4.5m. Taking the results from the OSL dating, we conclude that the minimum sinistral strike-slip rate is(0.33±0.04) mm/a since 14 ka BP and(0.28±0.03) mm/a since 20 ka BP.  相似文献   

12.
Nine earthquakes with M≥6 have stricken the northern segment of the Red River fault zone since the historical records, including the 1652 Midu M7 earthquake and the 1925 Dali M7 earthquake. However, there have been no earthquake records of M≥6 on the middle and southern segments of the Red River Fault, since 886 AD. Is the Red River fault zone, as a boundary fault, a fault zone where there will be not big earthquake in the future or a seismogenic structure for large earthquake with long recurrence intervals?This problem puzzles the geologists for a long time. Through indoor careful interpretation of high resolution remote sensing images, and in combination with detailed field geological and geomorphic survey, we found a series of fault troughs along the section of Gasha-Yaojie on the southern segment of the Red River fault zone, the length of the Gasha-Yaojie section is over ten kilometers. At the same time, paleoseismic information and radiocarbon dating result analysis on the multiple trenches show that there exists geological evidence of seismic activity during the Holocene in the southern segment of the Red River fault zone.  相似文献   

13.
讨论了阿尔金断裂带1900年以来的5级以上地震活动,结果显示空间上地震活动具有分段性,其中在青海段出现5级地震填空性空段,并形成5级地震的平静区,时间上具有平静和活跃交替的特征。进一步分析阿尔金断裂带青海段(茫崖北—肃北)现代小震活动,结果显示:茫崖以西震源深度约40 km以内,青海段(茫崖北—肃北)震源深度约10 km范围内,超过10 km较少,肃北—黑崖子以东约100 km处震源深度由浅逐渐变深,从10 km左右逐渐变化到40 km左右。与此同时,依据上述资料探讨了阿尔金断裂带青海段的强震危险性。  相似文献   

14.
通过对陆羽逆断层系上1896年同震地表破裂特征、长期活动习性和断错地貌等的研究,给出了可识别的逆断层型段落边界的标志,它们是断层崖形态持久性变化的过渡地段、断层抬升盘山地分水岭高程明显变化的转折部位、剖面几何结构转换区和断层下降盘盆地内的隐伏横向基岩脊等;指出逆断层上公里量级的空缺和阶区不能有效地终止或延缓逆断层型同震地表破裂的横向扩展,因此,不能作为逆断层型段落的边界,最后对陆羽逆断层系的千屋段和横手段的地震危险性进行了简要评估  相似文献   

15.
Qilian Shan and Hexi Corridor, located in the north of Tibetan plateau, are the margin of Tibetan plateau's tectonic deformation and pushing. Its internal deformations and activities can greatly conserve the extension process and characteristics of the Plateau. The research of Qilian Shan and Hexi Corridor consequentially plays a significant role in understanding tectonic deformation mechanism of Tibetan plateau. The northern Yumushan Fault, located in the middle of the northern Qilian Shan thrust belt, is a significant component of Qilian Shan thrust belt which divides Yumushan and intramontane basins in Hexi Corridor. Carrying out the research of Yumushan Fault will help explain the kinematics characteristics of the northern Yumushan active fault and its response to the northeastward growth of the Tibetan plateau.Because of limited technology conditions of the time, different research emphases and some other reasons, previous research results differ dramatically. This paper summarizes the last 20 years researches from the perspectives of fault slip rates, paleao-earthquake characteristics and tectonic deformation. Using aerial-photo morphological analysis, field investigation, optical simulated luminescence(OSL)dating of alluvial surfaces and topographic profiles, we calculate the vertical slip rate and strike-slip rate at the typical site in the northern Yumushan Fault, which is(0.55±0.15)mm/a and(0.95±0.11), respectively. On the controversial problems, namely "the Luotuo(Camel)city scarp" and the 180 A.D. Biaoshi earthquake, we use aerial-photo analysis, particular field investigation and typical profile dating. We concluded that "Luotuo city scarp" is the ruin of ancient diversion works rather than the fault scarp of the 180 A.D. Biaoshi earthquake. Combining the topographic profiles of the mountain range with fault characteristics, we believe Yumu Shan is a part of Qilian Shan. The uplift of Yumu Shan is the result of Qilian Shan and Yumu Shan itself pushing northwards. Topographic profile along the crest of the Yumu Shan illustrates the decrease from its center to the tips, which is similar to the vertical slip rates and the height of fault scarp. These show that Yumu Shan is controlled by fault extension and grows laterally and vertically. At present, fault activities are still concentrated near the north foot of Yumu Shan, and the mountain ranges continue to rise since late Cenozoic.  相似文献   

16.
塔里木盆地新疆喀什以西部分是西南天山和帕米尔两大对冲构造系统的会聚带,关于两者变形前缘和分界的确切位置存在不同认识.在乌恰县以南的玛依卡克盆地南缘,清晰可见属于帕米尔构造带、向N或NNE逆冲的帕米尔前缘逆冲推覆体(PFT).最近野外调查在盆地北部发现了西南天山前缘的最新变形带:向南逆冲的乌拉根背斜南翼断层.断层总体近E...  相似文献   

17.
龙陵-澜沧新生断裂带地震破裂分段与地震预测研究   总被引:5,自引:2,他引:5       下载免费PDF全文
龙陵 -澜沧新生断裂带的地震活动具频度高、强度大、周期短等特征 ,并以双震或震群型为主。断裂带由多条次级新生断层组成 ,呈斜列或共轭式展布 ,根据结构、规模、地震活动差异等因素把断裂带划分为 4个一级段、13个二级段 ,其中有 4个二级段又可划分出 8个三级段。历史上发生过大震、强震并有地震断层伴生的断层段为地震破裂单元 ;断裂带上晚第四纪有活动并有古地震事件 ,但无历史地震记载的地段为断层闭锁单元 ;次级断层之间的阶区或连接点为障碍体单元。从地震破裂特征分析 ,断裂带由破裂、闭锁、障碍体单元组成 ,根据地震、古地震、活断层、断层阶区的活动规律 ,断裂带可划分出 9个破裂单元、8个闭锁单元、10个障碍体单元。三者之间呈迁移、触发和转换能量的关系。根据这些关系和地震构造标志 ,对断裂带上未来可能发生大震、强震、中强震的地区分别作了预测。预测的危险区有 9个 ,其中大震区 1个 (永康 -永德地区 ) ,强震区 3个 (马站、石灰窑、酒房-勐混 ) ,中强震区 5个 (下顺江、里仁、大岗山、南明 -澜沧、勐遮  相似文献   

18.
The horizontal movement of the Helan Shan west-piedmont fault is important to determination of the present-day boundary between the Alashan and North China blocks as well as to the exploration of the extent of the northeastward expansion of the Tibetan plateau. Field geological surveys found that this fault cuts the west wing of the Neogene anticline, which right-laterally offset the geological boundary between Ganhegou and Qingshuiying Formations with displacement over 800m. The secondary tensional joints (fissures)intersected with the main faults developed on the Quaternary flood high platform near the fault, of which the acute angles indicate its dextral strike slip. The normal faults developed at the southern end of the Helan Shan west-piedmont fault show that the west wall of this fault moves northward, and the tensional adjustment zone formed at the end of the strike slip fault, which reflects that the horizontal movement of the main fault is dextral strike slip. The dextral dislocation occurred in the gully across the fault during different periods. Therefore, the Helan Shan west-piedmont fault is a dextral strike slip fault rather than a sinistral strike slip fault as previous work suggested. The relationship between the faulting and deformation of Cenozoic strata demonstrates that there were two stages of tectonic deformation near the Helan Shan west-piedmont fault since the late Cenozoic, namely early folding and late faulting. These two tectonic deformations are the result of the northeastward thrust on the Alashan block by the Tibet Plateau. The influence range of Tibetan plateau expansion has arrived in the Helan Shan west-piedmont area in the late Pliocene leading to the dextral strike slip of this fault as well as formation of the current boundary between the Alashan and North China blocks, which is also the youngest front of the Tibetan plateau.  相似文献   

19.
The southern segment of the Xiaojiang Fault (SSXF) is located at the intersection of the Xianshuihe-Xiaojiang Fault and Red River-Ailao Shan fault systems in the southeast margin of the Tibetan plateau. Based on the interpretation of remote sensing image, the SSXF clearly shows the linear feature and continuous distribution as a single, penetrating fault. It has a total length of about 70km, trends generally about 20° to the northeast and protrudes slightly in the middle to the east. A typically geomorphologic phenomenon about the synchronous left-lateral dislocation of ridges and gullies can be found at Liangchahe, Longtan Village along the SSXF. The distribution of faults, the sedimentary features, attitude variance and the primary dating results of the offset strata in the trench section across fault sag ponds reveal three paleoseismic events rupturing obviously the surface, which demonstrates that the SSXF has the ability of recurrence of strong earthquakes. High-precision topographic map about two gullies and the platform between them with synchronous dislocation is acquired by using the Trimble 5800 GPS real-time difference measurement system. The dislocation is (18.3±0.5)m. As the top geomorphologic surface between the above two gullies and their adjacent area, the terrace surface T2 stopped accepting deposits at ~2606a, based on the linear regression analysis of three dating data. According to the geological method, a sinistral strike-slip rate of (7.02±0.20)mm/a on the SSXF in the Holocene is obtained, which has a good consistency with the results provided by using GPS data. The preliminary results about the Holocene activity and slip rate of the SSXF demonstrate that the southward or south-southeast motion of the Sichuan-Yunnan block in the SE Yunnan region has not been absorbed by the possible shortening deformation and the sinistral strike-slip rate of the SSXF has not been drastically reduced. The SSXF is a Holocene fault with obvious activity. This preliminary understanding provides some basic geological data for the seismic risk evaluation of the SSXF in the future, and for the establishment and inspection of the seismotectonic model about the Sichuan-Yunnan block.  相似文献   

20.
根据断层位错和地貌位置,麦凯段断层陡坎分为三组,它们是三次史前地震的产物。根据位错量和陡坎长度对比,史前地震的震级大约为7级。利用扩散方程模拟史前7级地震发生的重复时间间隔是5—11千年  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号