首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
2.
姜林林  柳建华  张良  赵越 《化工学报》2018,69(4):1428-1436
对CO2在水平微细管内流动沸腾换热进行了实验研究。实验工况:饱和温度-40~0℃,热通量5~35 kW·m-2,质量流率200~1500 kg·m-2·s-1,管径1.5 mm。实验结果表明:热通量增加对于强化核态沸腾换热具有显著影响,同时加快干涸发展进程,降低干涸起始干度;质量流率对于传热系数的影响较小,随着质量流率的增加干涸起始干度降低,干涸后的传热系数有所增加;饱和温度对CO2物性的影响是造成其不同工况时换热特性差异的主要原因,饱和温度升高干涸起始干度具有降低的趋势,且干涸后传热系数下降更为剧烈。通过与理论预测模型的对比研究:Cheng模型对干涸前具有较高的预测精度,在30%误差带内预测精度达到77.1%,绝对平均偏差为20.5%,干涸后对应预测精度比与绝对平均偏差仅为22.9%与57.8%。  相似文献   

3.
为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。  相似文献   

4.
罗小平  周家玉  李桂中 《化工进展》2023,(12):6157-6170
为探究相分离结构对微细通道流动沸腾压降的影响,利用数控技术加工了相分离结构微细通道实验段。以质量分数为30%的甘油水溶液作为实验工质,在工质入口温度为70℃、质量流率为121.25kg/(m2·s)、热流密度为76.61~150.70kW/m2的工况下分析了两种(多孔/少孔)相分离结构和无排气孔的普通微细通道的压降变化,同时对通道内气泡行为进行了可视化研究,引入气相分离系数对受限气泡在通道内的生长行为进行定量分析。实验结果表明,相分离结构可以改善通道内两相总压降,在多孔、少孔和普通微细通道中,微细通道的气相转移面积越大,气相分离系数越大,通道内受限气泡长径比越小,两相总压降损失越小。此外,通过对相邻通道增加压差,调整合适的压力切换周期,可以进一步改善相分离膜的气相转移速率,减缓通道内两相总压降。  相似文献   

5.
对CO_2在内径1.5 mm水平微细管内流动沸腾换热摩擦压降特性进行了实验研究。实验工况:热通量(7.5~30 k W·m-2)、质量流率(300~600 kg·m-2·s-1)、饱和温度(-40~0℃)。实验结果表明:热通量的增加对摩擦压降影响很小,几乎为零;质量流率是影响摩擦压降的最主要因素;随着饱和温度的升高摩擦压降减小;干度对摩擦压降影响主要由管内流型变化导致。将实测摩擦压降变化趋势绘制于CO_2流态图中,比较发现理论预测摩擦压降最大值落在环状流末端区域。实验过程中对各个工况管内流态进行可视化研究,理论分析所采用的流态形式与实际CO_2在微细通道内所具有的流态类型基本一致。  相似文献   

6.
薛涵文  聂峰  赵延兴  董学强  郭浩  沈俊  公茂琼 《化工学报》2022,73(11):4903-4916
丙烷(R290)作为一种性能优异的自然制冷剂,其两相流动压降特性在换热器设计及制冷系统优化等方面起到重要作用,而且目前对于低质量流率以及低饱和压力条件下的压降分析相对较少,且仅有少数研究结合流型进行分析。因此,开展了R290在内径6 mm的水平光管内压降特性实验研究。在如下实验工况范围内,质量流率70~190 kg·m-2·s-1,热通量10.6~73.0 kW·m-2,饱和压力0.215~0.415 MPa,干度0~1,获取了压降实验数据,并进一步基于实验工况以及流型分析了加速压降、两相摩擦压降的变化趋势。对比了现有的摩擦压降关联式并基于Friedel模型,使用Rev/Rel 和液相Froude数Fr表征气液相相互作用,获取了一个新的基于流型的两相摩擦压降关联式。新模型可以很好地预测R290实验数据,预测结果的平均相对偏差(ARD)为-0.2%,平均绝对相对偏差(AARD)为5.2%,λ30%为97.9%。对比文献中的实验数据,10组数据预测结果的ARD为10.0%,AARD为19.3%,λ30%为80.3%,由此可见新模型具有一定的预测精度和适用性。  相似文献   

7.
鲍伟  马虎根  白健美  谢荣建 《化工学报》2011,62(Z1):118-122
在压力为0.5~1.7 MPa,质量流量为381~2291 kg·m-2·s-1,干度为0~1.0的工况范围内试验研究微尺度通道内低沸点混合工质R32/R134a的流动沸腾压降性能,同时对两相流流型进行可视化观察。微尺度通道内径为1.92 mm,0.86 mm和0.5 mm相似文献   

8.
CO2由于良好的环境特性和优良的热力学特性,被认为是一种理想的替代制冷剂。与传统制冷剂相比,CO2有着十分不同的流动沸腾换热特性。然而现有的换热关联式都是基于各自的实验数据拟合得出,由于数据点太少和变量参数范围受限导致关联式的预测结果大相径庭。所以建立更加全面的CO2管内流动沸腾换热数据库对不同换热模型进行对比分析,对于深入了解CO2管内流动沸腾换热特性和研究更加准确的换热关联式具有重要意义。通过从24篇文献中搜集的4040个实验数据点对6个CO2的管内流动沸腾换热模型进行对比分析,发现Fang(2013)关联式误差最低为10.6%,并绘制了气液相Reynolds数随管径的变化,气液相Reynolds数的变化的散点图以及Nusselt数随Bond数变化的趋势图,可为深入了解CO2管内流动沸腾换热特性和将来研究更加准确的新型换热关联式提供参考。  相似文献   

9.
通过实验研究了环境友好型制冷剂R1234yf在内径为0.5mm的水平圆形微通道内的流动沸腾换热特性,测量了不同工况下R1234yf的沸腾换热系数(HTC),并与传统制冷剂R134a进行了对比,分析了质量流速、热流密度和干度对换热系数变化规律的影响。实验条件为:饱和温度(17±1)℃,质量流速1000~2500kg/(m2·s),热流密度25~143kW/m2。实验结果表明:R1234yf的换热系数随着热流密度的增大而显著增大,而质量流速和干度的影响较小,核态沸腾为其主导换热机制。对比R1234yf和R134a在相同工况下的换热特性,发现两种工质的平均换热系数差别较小,并均随着热流密度增大而逐渐增加,但是R1234yf发生干涸(Dryout)时的热流密度小于R134a。将实验数据与已有文献中的核沸腾主导的经验关联式的预测结果进行了对比,得到了较好的吻合。  相似文献   

10.
何宽  柳建华  张良  余肖霄 《化工进展》2019,38(8):3548-3555
为了给冷链用换热器小管径的可行性提供理论支持,对R404A制冷剂在5mm微肋管内流动沸腾压降特性进行了实验研究。实验工况为:饱和温度为0℃、热通量为5~25kW/m2、质量流速为200~500kg/(m2·s)、干度为0.1~0.9。研究结果表明:质量流速的提高不仅会增大摩擦压降,同时使摩擦压降随干度变化的趋势提前转变;摩擦压降受热通量的影响较小,在0.1~0.7的干度区间,摩擦压降不随热通量的增大而改变,热通量仅会使摩擦压降的拐点提前出现;与光滑管相比,微肋管内的两相流动摩擦压降较高,增大质量流速会提高摩擦压降的增量,当干度值为0.4时,增量出现极值,随后增量逐渐上升。本实验研究的数据与理论预测模型的对比显示:修正后的Kim模型能够较佳的预测本实验数据,绝对平均偏差11.54%,偏差幅度±30%以内的数据多达85.23%。  相似文献   

11.
为探究不同截面微肋阵通道内的流动沸腾换热机理,以去离子水为工质,在质量流速为96~224 kg·m-2·s-1,有效热通量为10~240 W·cm-2的范围内,对圆形、菱形、椭圆形微肋阵通道内流动沸腾换热及压降特性进行了实验研究,同时对微通道内流动沸腾的不稳定性进行了分析。通过实验发现:在低热通量下,核态沸腾占主导地位,而在中高热通量下,薄膜蒸发对流换热为主要沸腾机制;沸腾传热系数随着热通量和出口干度的增加而减小,两相压降随着热通量和出口干度的增加而增大;微肋阵肋间形成的次级通道宽度对换热和两相压降有很大的影响,次级通道越宽,气泡越容易脱离,换热效果越好,压降越大;微肋的存在抑制了气泡的反向流动,减小了沸腾不稳定性,推迟了临界热通量的发生,椭圆形微肋阵通道的流动沸腾稳定性最好,而圆形微肋阵通道的流动沸腾稳定性最差。  相似文献   

12.
对超临界二氧化碳在圆管内流动时的压降和摩擦系数进行了实验研究。实验段长为2000 mm,内径为10 mm。该实验压力范围为8~16 MPa,质量流量范围为1000~1525 kg·m-2·s-1,内壁热通量范围为96.5~283.2 kW·m-2。得到了不同工况下竖直圆管内流动阻力的变化规律,分析了压力、质量流速、主流焓值和热通量对圆管内摩擦阻力的影响。实验结果表明摩擦压降随着质量流量和压力的增加而显著增加,特别是当主流焓值超过拟临界焓值后,其增加的速度变得更加剧烈,同时发现热通量对摩擦压降的影响较小。对于预测常物性摩擦因子的经验关联式并不能预测超临界CO2的摩擦因子。因此提出了一个新的经验关联式,其实验数据在±20%误差范围内占83.31%。  相似文献   

13.
对垂直管内高沸点有机工质异丙苯的流动沸腾换热与摩擦压降特性进行了实验研究,获得了换热系数与摩擦压降沿流动方向的变化情况,并与前人模型的计算值进行了比较。实验过程中质量流速为382—786 kg/(m2.s),实验工况干度为0.1—0.6,压力为0.21—0.27 MPa。通过对实验数据的回归分析,获得了换热系数与摩擦压降的计算关联式。在对复杂的非线性方程进行回归分析时,提出了一种简单的迭代分析方法。研究结果丰富了高沸点工质的流动沸腾换热数据,为石化行业中换热器的设计提供了依据,并为强化凝结换热器的开发和性能测试提供了比较基准。  相似文献   

14.
胡自成  马虎根  宋新南 《化工学报》2006,57(11):2577-2581
以非共沸混合工质R32/R134a为实验工质,进行了水平细圆管内流动沸腾换热实验.在获取大量实验数据的基础上,分析了质量干度、热通量和质量通量密度对沸腾换热的影响,讨论了各种工况下的换热机理,比较分析了细圆管和常规管道内流动沸腾换热性能.实验结果表明:在本实验范围内,水平细圆管内流动沸腾换热主要受热通量的影响,绝大部分实验工况下核态沸腾占主导地位.尺度效应是引起微细通道内流动沸腾换热特性不同于常规管道的主要原因.  相似文献   

15.
吕静  李昶  石冬冬  陈启 《化工学报》2017,68(5):1866-1873
分析二氧化碳微通道蒸发器的物理结构及二氧化碳两相段及过热段的流动特性,基于有限元分析法,采用分段研究的方法建立微通道二维分布参数模型。研究各参数对二氧化碳在微通道中流动特性的影响,根据模拟结果可得压降主要发生在蒸发器入口经集流管进入扁管处,二氧化碳在过热段压降远小于两相段压降。蒸发压力对扁管内的压降影响很小,随着二氧化碳质量流率增大,压降增大,两相区与过热区分界线右移。对比分析模拟与实验结果,误差在10%之内,验证所建立数学模型的合理性。  相似文献   

16.
赵雅鑫  赖展程  胡海涛 《化工学报》2021,72(10):5074-5081
泡沫金属具有超大比表面积和高热导率,将其填充于换热管内可用于制冷空调系统的强化传热。研究了R1234ze(E) 在泡沫金属管内的流动沸腾换热和压降特性。实验工况为:干度0.1~0.9,质流密度90~180 kg·m-2?s-1,热通量12.4~18.6 kW·m-2。测试样件为泡沫铜填充管,孔密度为10~40 PPI、孔隙率为90%~95%。实验结果表明,R1234ze(E) 比R410A的传热系数低2%~10%,两相压降低30%~42%;当干度大于0.8时,低质流密度下泡沫金属管内传热系数随干度的增加增幅更大;泡沫金属在强化流动沸腾换热的同时,造成压降显著增加,换热影响因子的范围为1.23~2.90,压降影响因子的范围为6~45。开发了适用于R1234ze(E) 的泡沫金属管内流动沸腾换热和压降关联式,传热系数和两相压降的预测值与95%的实验值误差分别在±15%和±25%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号