首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
《机械传动》2013,(9):10-14
针对风力发电机齿轮传动系统在变风速工况下失效率高的问题,在模拟真实风速的基础上,建立考虑外部随机风载及内部轮齿时变啮合刚度、轴承时变刚度及综合传递误差等激励因素的风力发电机齿轮传动系统齿轮)轴承耦合动力学模型,通过对动力学模型进行仿真计算,得到各齿轮副的动态啮合力和各支承轴承的动态接触力。在此基础上,利用有限单元法、赫兹接触理论和数理统计理论得到了传动系统各齿轮和各支承轴承的动态接触力的概率分布,基于应力)强度干涉理论建立风力发电机齿轮传动系统关键零部件的模糊可靠性模型,并计算了关键零部件及系统的模糊可靠度。  相似文献   

2.
针对风力发电机齿轮传动系统在随机风作用下失效率高的问题,在模拟真实风速的基础上,建立考虑外部随机风载及内部齿轮时变啮合刚度、轴承时变刚度及综合传递误差等激励因素的风力发电机齿轮传动系统齿轮-轴承耦合动力学模型,通过对动力学模型进行仿真计算,得到各齿轮副的动态啮合力和各支承轴承的动态接触力。结合有限单元法和赫兹接触理论,得到关键零部件的应力时间历程,采用雨流计数法对应力时间历程进行统计分析,得到传动系统各关键零部件承受载荷的应力谱及概率分布函数。研究结果为风力发电机齿轮传动系统的动态可靠性分析和疲劳寿命预测奠定基础。  相似文献   

3.
根据2.5 MW风力发电机行星齿轮传动系统在随机风场中复杂变工况的工作特点,利用双参数威布尔分布模型描述随机风速的分布,获得由随机风速引起的时变风载。采用集中参数法建立风力发电机行星齿轮传动系统平移-扭转耦合动力学模型。综合考虑风力发电机行星齿轮传动系统的轴承支撑刚度、齿轮副时变啮合刚度等内部激励对传系统的影响,对变风载下2.5 MW行星齿轮传动系统的动力学特性进行仿真计算分析,求得在外部风载作用下各构件的位移响应与速度响应,为风力发电机行星齿轮传动系统的故障诊断和优化设计奠定了良好的理论基础。  相似文献   

4.
随机风载作用下风力发电机齿轮传动系统动态可靠性分析   总被引:12,自引:1,他引:12  
运用最小二乘支持向量机(Sparse least squares support vector machines,SLS-SVM)机器学习方法建立风场随机风速模型,根据随机风速模型和空气动力学理论得到随机风引起的系统外部载荷激励,建立考虑齿轮时变啮合刚度和滚动轴承时变刚度的风力发电机行星齿轮传动系统齿轮—轴承耦合动力学模型,并对动力学模型进行仿真计算,分别得到各齿轮副的动态啮合力和滚动轴承动态接触力。以此为基础,将载荷作用过程视为随机过程,推导出随机载荷作用下的等效载荷累计分布函数。根据应力—强度干涉理论建立风力发电机齿轮传动系统各齿轮和轴承的动态可靠性模型,利用二阶矩和摄动方法求出各齿轮、轴承的动态可靠性指标,并计算出动态可靠度,研究各齿轮、轴承和传动系统的动态可靠度随时间的变化规律,为风力发电机齿轮传动系统动态可靠性设计奠定了基础。  相似文献   

5.
变风速运行控制下风电传动系统的动态特性   总被引:6,自引:1,他引:6  
基于齿轮系统动力学的方法对风电传动系统进行研究。运用基于自回归模型的线性滤波法(Auto-regressive,AR)建立的风速模型对实际风场的随机风速进行模拟;根据风力发电机在实际情况中的运行控制策略获得风力发电机齿轮传动系统的时变输入转矩激励;综合考虑风力发电机齿轮传动系统中各个齿轮副的时变啮合刚度、各个滚动轴承的刚度、各个轮齿综合啮合误差等内部激励,采用集中参数质量法建立风力发电机齿轮传动系统的耦合动力学模型;在此基础上建立风力发电机齿轮传动系统的动力学微分方程并进行仿真计算,分别求解风力发电机齿轮传动系统的固有频率、振动响应、动态啮合力和滚动轴承动态轴承力。研究结果为风力发电机传动系统的动态性能优化设计和可靠性设计奠定了基础。  相似文献   

6.
针对随机风作用下风力发电机齿轮传动系统失效率高的问题,研究了随机风引起的风力发电机传动系统外部风载荷以及内部由齿轮、轴承刚度及综合啮合误差等引起的内部动载荷激励,基于集中质量法建立了风电齿轮传动系统齿轮-轴承耦合动力学模型。在对模型进行仿真求解的基础上,分别求得了传动系统中各齿轮和轴承的动态接触应力-时间历程。将载荷作用过程视为随机过程,推导出随机载荷作用下的等效载荷累计分布函数,从系统层面上建立了基于应力-强度干涉理论的风力发电机齿轮传动系统动态时变可靠性模型,模型考虑了零件的失效相关性和强度退化因素,研究了失效相关性和强度退化对风电齿轮传动系统可靠度和失效率的影响规律,为风力发电机齿轮传动系统动态设计和可靠性优化设计奠定了基础。  相似文献   

7.
半直驱风力发电机凭借良好的综合性能,已得到较广泛的技术推广,前景广阔,其关键机械部件——传动系统的动力学问题依然突出。文中针对半直驱风力发电齿轮传动系统,在考虑时变外部激励、齿根裂纹、啮合误差等条件下,运用集中参数法建立了含故障的半直驱风电行星齿轮传动系统动力学模型,计算得到了齿轮传动系统的固有频率及振型。针对随机风场中,风速变化复杂的特点,采用线性滤波AR模型,模拟了脉动风速时程曲线,获得了半直驱风电行星齿轮传动系统的外部激励;利用改进能量法对含裂纹齿轮的啮合刚度进行了数值模拟,获得故障齿轮的时变啮合刚度;引入随机风载及故障动态参数激励,仿真分析了系统的动态响应,研究了时变载荷激励下含故障的行星齿轮系统的动力学特性,为风电齿轮传动系统的故障分析、诊断提供了理论依据。  相似文献   

8.
为了更好地研究轮齿齿根裂纹对齿轮传动系统动态特性的影响,将风力发电机增速齿轮箱中一对啮合轮齿作为研究对象。运用改进能量法计算含有齿根裂纹齿轮的齿轮系统时变啮合刚度,考虑齿侧间隙、时变啮合刚度和传动误差影响,建立含有齿根裂纹故障的齿轮传动系统6自由度动力学模型。利用四阶Runge-Kutta法对建立的齿轮系统微分方程进行积分求解,得到齿轮系统动力学响应。通过幅频响应曲线、时域图及频域图,综合分析了含有不同深度裂纹故障的齿轮传动系统的动力学特性。最后,通过试验验证齿轮系统理论仿真的正确性,从而为风力发电机齿轮箱中的齿轮系统裂纹故障识别提供理论依据。  相似文献   

9.
风力发电齿轮箱系统耦合非线性动态特性的研究   总被引:4,自引:1,他引:3  
对大型风力发电机齿轮箱传动系统进行分析研究,以齿轮啮合原理、齿轮系统动力学和非线性动力学的理论为依据,在考虑齿轮系统时变刚度、齿侧间隙和制造误差的基础上,建立了具有多级齿轮传动的大型风电齿轮箱的齿轮—传动轴—箱体系统耦合非线性动力学模型。在考虑系统内部激励的情况下对整个耦合系统动态特性进行了研究,为齿轮系统动态性能优化提供了理论依据。  相似文献   

10.
考虑随机制造误差的风力机行星齿轮系统动力学特性   总被引:5,自引:0,他引:5  
为研究综合传递误差的随机波动对风力发电机齿轮传动系统动力学特性的影响,考虑齿轮时变啮合刚度、综合传递误差等因素,建立风力发电机行星齿轮传动系统纯扭转动力学模型。以随机风速引起的齿轮系统转矩波动作为行星齿轮系统的外部激励,对某1.5 MW风力发电机行星齿轮传动系统的动力学特性进行仿真分析,得到系统各响应量时域内的统计特征和齿轮副间的动态啮合力统计特征。分析表明:行星架、行星轮和太阳轮在扭转方向上的振动特性与外部载荷相关,其振动位移与外部载荷波动有相似变化的趋势;综合传递误差随机分量的离散程度对行星齿轮系统的动态特性和齿轮副间的动态啮合力有较大影响。随着综合传递误差随机分量离散程度的增加,行星架、太阳轮和行星轮在扭转方向上的振动幅值明显增加;综合传递误差随机分量的随机性使齿轮副间动态啮合力产生随机波动,随机分量离散程度越大,动态啮合力波动越明显;当随机分量的离散程度达到某一值时,齿轮啮合过程发生脱离,引发啮合冲击。  相似文献   

11.
针对风电行星齿轮系统变载变速的运行特点,通过分析系统构件为刚体和弹性体时的受力情况,应用运动合成原理,提出了变载荷激励下行星齿轮系统动力学模型的建立方法,并推导出系统的运动微分方程。在此基础上,分析了行星齿轮系统的内外部激励因素及其对系统动载荷和动载系数的影响机理。计算并分析了某MW级风电行星齿轮系统的动态响应,结果表明:系统的时变啮合刚度和时变轴承刚度主要影响响应频率的数值大小和系统的振动能量;外部变载荷使响应频率中存在明显的低频成分,并影响各阶振动间的能量分配;齿轮啮合力的动载系数主要受到外部变载荷的影响,而轴承力的动载系数同时受到系统内部激励和外部激励的影响。研究结果为风电齿轮箱的疲劳寿命分析和动态优化设计奠定了基础。  相似文献   

12.
为了更准确地分析风电行星齿轮系统的动力学特性,在同时考虑风速变化和发电机电磁转矩变化引起的外部载荷激励,齿轮时变啮合刚度、轴承时变刚度以及行星齿轮啮合相位差等引起的内部激励的条件下,建立了风电行星齿轮系统的动力学模型。在此基础上,采用Runge-Kutta数值积分方法求解了某兆瓦级半直驱风电行星齿轮系统的动态响应,分析了上述激励对系统动态特性的影响规律。结果表明:外部变载荷的激励使系统的响应频率具有明显的低频成分,各构件的扭转振动位移与外部合力矩有相似的变化趋势;行星轮啮合相位差的激励使系统的结构频率成分增多且频率减小,增加了系统共振的可能性;轴承时变刚度使系统的高阶响应频率产生较大波动,增加了系统动态响应的复杂性。

  相似文献   

13.
基于动力学和可靠性的风力发电齿轮传动系统参数优化设计   总被引:22,自引:2,他引:20  
通过建立1.5 MW风力发电齿轮传动系统动力学微分方程,考虑由风速变化引起的外部激励和由时变啮合刚度与综合误差引起的内部激励,应用模态叠加法求解系统的动力学微分方程并给出了使用系数和动载系数的表达式。在此基础上,对齿轮传动系统的优化问题进行了深入研究, 建立以等强度原则和可靠性为约束,以体积最小为目标的优化设计数学模型,利用Matlab的优化工具进行优化,并对实例进行分析计算。分析结果表明,给出的变工况动载荷条件下的风电齿轮传动系统优化设计方法和得到的设计参数,能有效地提高传动系统的可靠度,明显降低重量和体积。  相似文献   

14.
The reliability and service life of wind turbines are directly influenced by the dynamic performance of the gearbox under the time-varying wind loads. The control of vibration behavior is essential for the achievement of a 20-year service life. We developed a rigid-flexible coupled dynamic model for a wind turbine gearbox. The planet carrier, the housing, and the bedplate are modelled as flexibilities while other components are assumed as rigid bodies. The actual three points elastic supporting are considered and a strip based mesh model is used to represent the engagement of the gear pairs. The effects of gear tooth modifications on the dynamics were investigated. Finally, we conducted a dynamic test for the wind turbine gearbox in the wind field. Results showed that the contact characteristics of gear pairs were improved significantly; the peak-to-peak value of transmission error of each gear pair was reduced; the amplitudes of the vibration acceleration and the structural noise of the wind turbine gearbox were lowered after suitable tooth modification.  相似文献   

15.

The current research on wind turbine gearboxes (WTG) considering multiple-factors influence mainly focuses on dynamic response. However, load sharing performance (LSP) is also extremely important for gear transmission system reliability. In this paper, considering the comprehensive effects of manufacturing errors, assembly errors, clearance floating between stages, mesh stiffness and time-varying load, a coupled translation-torsion dynamic model for WTG was developed to study the LSP. Based on the amplitude variations of time-varying mesh stiffness caused by tooth crack, an approach is provided to introduce the tooth crack into the dynamic model. The results indicate the LSP is mostly sensitive to multiple-errors and severe tooth crack, followed by the time-varying load. The LSP of a system is periodically affected by tooth crack, and the fluctuation ranges increase with the crack growth. Furthermore, the crack of sun gear has greater influence on LSP than that of planet and ring gear.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号