首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水平管内油气水三相流动摩擦阻力压降特性研究   总被引:3,自引:0,他引:3  
对水平管内油气水三相流动的摩擦压降特性进行系统的理论和实验研究 ,建立了泡状流和环状流摩擦压力降的理论模型 ,揭示了摩擦压力降随折算气速、折算液速、油水混合物含水率及管径的变化规律。实验结果与理论计算结果相吻合。  相似文献   

2.
立式螺旋管气液两相流摩擦阻力特性研究   总被引:2,自引:1,他引:1  
李广军  郭烈锦 《化学工程》1998,26(4):30-31,41
分别以油 气、气 水为工质,对立式螺旋管内气液两相流的摩擦阻力特性进行实验研究。实验用螺旋管完全由内径为39mm的有机玻璃管弯制而成,其螺旋直径265mm,全长4490mm。在对实验结果和前人有关研究进行分析的基础上,给出了两种流动条件下摩擦阻力的计算公式,并与实验结果进行了比较,两种流动条件下,预测值与实验数据的最大偏差分别在30%和20%之内。  相似文献   

3.
Calculation of Pressure Drop in Ternary Slug Flow of Water, Oil, and Air. Ternary flow of two immiscible liquids and a gas have hardly been studied up to the present although they frequently occur in petroleum production and in boiling mixtures of liquids. The article first considers known facts about the various kinds of binary flow as limiting cases of ternary flow with special consideration of slug flow. The article then reports new experimental results on ternary flow of oil, water, and air. The frictional pressure drop for ternary flow can be determined with the aid of known calculation procedures valid for binary flow. The limits of the observed forms of flow can be read from a flow map extended to include ternary flow. The pressure drop of ternary slug flow cannot be calculated without a knowledge of the form of flow. The frequency of slug movement is calculated for ternary flow by considering the pressure drop on binary flow of oil and water and the modified slug formation of liquids with higher viscosity. For small volume flows of gas the slug is almost ungassed. The pressure drop can be calculated with considerable accuracy in this range. At higher gas volume flows this becomes possible on considering measured slug lengths.  相似文献   

4.
Three-sphase flow invo1ving oil-water two immiscible liquids and gas which is often foundin the fields of petroleum production has been studied in this paper.A new method with thecombination of a horizontal tube,a downward flow vertica1 tube and an orifice to measure theflowrates is presented.In this method the frictional pressure drop in the downward vertical tube isreplaced by that in the horizontal tube,the void fraction is derived from the gravitational pressuredrop,then the volume fraction of the individual phase can also be obtained.The individual flowratescan be calculated when the water fraction is known.This method is applicable for many kinds ofoil-wells to measure the flowrates of crude oil,natural gas and water.Compared with other methods,the presented method involves fewer measuring parameters.The experimental results proved quitegood accuracy of the method,with measurement deviation within 10%,and reliable results wereobtained under high Dressure conditions.  相似文献   

5.
Sand holdup is one of the most important hydrodynamic parameters that is needed for performance estimation, design, operation and control of oil‐gas‐sand multiphase production and pipeline transportation systems. The performance of oil‐gas‐sand multiphase flow can be reliably evaluated by measuring the sand holdup in such oil‐gas‐sand multiphase production and pipeline transportation systems. In the present work, a local sand holdup has been measured under conditions analogous to the horizontal oil‐gas‐sand three‐phase slug flow in pipelines. Accurate local sand particle holdup measurements were performed by the digital imaging technique. The results revealed the influence of operating conditions such as gas and liquid velocities and sand particle loading on the distribution of the local sand particle holdup in the horizontal air‐water‐sand multiphase slug flow pipe. Explanations for the observed trends are provided, shedding light on the general structures and mechanisms of the distribution of the local sand holdup in a horizontal oil‐gas‐sand three‐phase slug flow. Such information on the horizontal air‐water‐sand three‐phase slug flow mechanisms are essential to advance the mechanistic approach for predicting local sand holdup distribution and the subsequent effect on sand deposition during multiphase petroleum production and transfer operations.  相似文献   

6.
研究了水平管内不同液相介质(水、油和不同浓度的CMC溶液)对气液两相间歇流动压降的影响. 实验管道为内径50 mm的透明有机玻璃管,从入口到分离器长约30 m,实验段由2个长3 m的水平管组成. 共记录了320组不同表观流速下的压降信号:油相0.17~1.85 m/s,水相0.17~2.48 m/s,CMC溶液0.17~1.42 m/s,气相0.06~3.40 m/s. 结果表明,液相为牛顿流体(油或水)的气液流动,随着表观气相流速的增大,压降呈增加趋势;非牛顿幂率流体(不同浓度的CMC溶液)的管道流动,当流动指数低于一定值时,压降随气相流量的增加呈降低趋势,并且低于单液相流动的压降. Lockhart-Martinelli模型过高地预测了气-非牛顿幂率流体两相的压降.  相似文献   

7.
Hydrodynamic characteristics, viz. bed pressure drop and gas holdup, have been studied for ternary mixtures of homogeneous regular particles in a co-current three-phase fluidized bed. For this, a series of experiments have been carried out in a 5-cm diameter column with air as the gas phase, water as the liquid phase, and ternary mixtures of glass beads (1.54, 1.3, and 1.1 mm) as the solid phase. The dependence of bed pressure drop on the average particle diameter, superficial gas velocity, and initial static bed height has been discussed. Based on the dimensional and statistical analyses, correlations have been developed with the system parameters, for both bed pressure drop and gas holdup. Experimental values of bed pressure drop and gas holdup have been found to agree well with those calculated from developed correlations.  相似文献   

8.
Two phase flow in a horizontal pipe, with orifice plates placed at regular intervals as obstructions, was studied for the effect of phase velocities on flow patterns, fractional phase hold-ups, pressure drop and liquid phase axial dispersion. Radioactive technetium-99m (as an aqueous solution of sodium pertechnatate) was used as tracer. A pulse injection technique with two point measurements was employed. Three different orifice diameters were used (8 mm, 16 mm, and 20 mm) in a pipe diameter of 32 mm. The orifice spacing was 500 mm in all cases. Superficial gas (air) velocity was varied over a range from 0.02 m/s to 1.0 m/s and superficial liquid (water) velocity from 0.03 m/s to 0.85 m/s. Different flow patterns under different flow conditions were identified and a generalised flow map is presented. Variations in hold-ups and pressure drop with flow patterns have been explained. Rational correlations have been developed for fractional phase hold-ups and pressure drop. A preliminary comparison of two phase gas-liquid flow in a horizontal pipe with orifice obstructions (to be called orifice pipe reactor), as a gas-liquid contacting device, is made with a conventional bubble column reactor. Recommendations have been made for future work.  相似文献   

9.
基于自主设计加工并搭建的水环输送稠油减阻模拟管路系统,采用500#白油模拟稠油,试验研究了稠油在水环作用下的水平管流阻力特性,分析了油相表观流速(0.3~1.0m/s)、水相表观流速(0.11~0.72m/s)及入口含水率(0.13~0.49)对水润滑管流流型特征及减阻效果的影响。结果表明:环状水膜可有效隔离并润滑油壁界面,油-水两相流流型总体上呈稳定的偏心环状流结构;水环输送可大幅降低管道输送过程中的压降,其压降值仅为相同油流量下纯油输送压降的1/55~1/27;当入口含水率为0.13~0.27时,水环输送的效能显著,输油效率均高于40;油相表观流速和入口含水率的增加会增大单位管长压降,降低水环输送的减阻效果和输油效能。  相似文献   

10.
A detailed flow pattern map for horizontal air—water flow was constructed using the results from pressure drop measurements in a Perspex pipe having an inside diameter of 0.05 m and a length of 5.08 m. Visual observations of flow patterns were supplemented by electrical conductivity measurements. A simple empirical pressure drop correlation is proposed which can be used in horizontal air—water flow.  相似文献   

11.
工业级管道中粉煤浓相流动特性   总被引:3,自引:2,他引:3       下载免费PDF全文
分别以干燥空气和粉煤为输送载气和介质,在39 mm工业级水平不锈钢管内进行了浓相气固两相流动特性实验研究。高速摄像仪拍摄到的粉煤流型表明,浓相输送条件下存在分层流。在流化气和调节气协同作用下,工业级管道中的粉煤浓相输送规律与此两路气流流量密切相关,并获得了39 mm管径下的粉煤气力输送相图。与管径较小的20 mm水平不锈钢管输送结果的比较表明:较大管径条件下,输送压力对粉煤流率的影响更为显著,输送的经济气速相对较高;相同输送通量情况下,较大管径的输送单位管长压降低,且输送通量变化引起的单位管长压降变化也较为平缓。  相似文献   

12.
The present study is aimed at an investigation of the pressure drop characteristics during the simultaneous flow of a kerosene‐water mixture through a horizontal pipe of 0.025 m diameter. Measurements of pressure gradient were made for different combinations of phase superficial velocities ranging from 0.03–2 m/s such that the regimes encountered were smooth stratified, wavy stratified, three layer flow, plug flow and oil dispersed in water, and water flow patterns. A model was developed, which considered the energy minimization and pressure equalization of both phases.  相似文献   

13.
Core annular flow pattern, where a low viscosity liquid surrounds a very-viscous one, may be very interesting for heavy oil transportation. However, in oil production, oil and water rarely flow alone and gas is usually present. Despite several publications on liquid-liquid core annular flow, no much work has been done towards a proper characterization of the effect of gas on pressure drop. The aim of this paper is twofold: to provide a new data base on three-phase (very-viscous-oil/water/air) flow, and to propose a simple model for the determination of pressure drop.  相似文献   

14.
彭壮  汪国琴 《当代化工》2016,(5):897-899
为了研究大输量条件下多相混输管路的流动特性,以水和空气为实验介质,在长江大学多相流实验平台上进行了水平状态的高气液量两相流模拟实验研究。实验采用内径为60 mm、长9.4 m的透明有机玻璃管,并利用高速摄像仪记录实验过程中的流型。通过对实验流型进行整理,将水平管内的气液两相流流型划分为分层流、泡状流、段塞流和环状流,并与典型的Mandhane流型图进行对比分析。另外,对实验范围内的几种典型流型下的压降梯度变化规律进行了研究,泡状流区域压降梯度随气流速的增大而减小,段塞流区域压降梯度随气流速的增大而缓慢增大,环状流区域压降梯度随气流速的增加而继续增大。  相似文献   

15.
J. Xu  Y. Wu  Y. Chang 《化学工程与技术》2009,32(12):1922-1928
In this work, an experimental study was made on gas injection into an oil‐water flow in horizontal pipes with two unequal pipe diameters. Special attention was given to the influence of gas injection on the average in‐situ oil fraction. Measurements were made for input water flow rates of 1.25–5 m3/h, input oil flow rates of 0–8 m3/h and input gas flow rates of 0–9 m3/h. It was found that gas injection has a considerable influence on the in‐situ oil fraction. In general, a small increase in the rate of air injection leads to greatly decreasing in‐situ oil fractions. The in‐situ oil fraction with gas injection decreases to a greater extent than that without gas injection, at the same input liquid flow rates. At a given input water flow rate, the value of the in‐situ oil fraction in the pipe with the larger diameter is higher than that in the pipe with the smaller diameter. Furthermore, the drift flux models were extended to predict the average in‐situ fractions of the oil phase in the intermittent three‐phase flow regimes. A good agreement is obtained between theory and data, especially for the in‐situ oil fraction range of 0.2–1.0.  相似文献   

16.
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.  相似文献   

17.
对内径40mm的钢管和有机玻璃管内油水二相水平流动时的流型、摩擦压降特性进行了详细的实验研究,结果表明:油包水向水包油的转变发生在含水体积分数约0. 4时。随含水体积分数的增大,油水二相流的摩擦压降先是急剧减小,其后在含水体积分数大于0. 4时压降变化趋于平缓。油水二相流的摩擦压降受含水体积分数、管壁润湿特性、管壁粗糙度以及混合物流速的影响,当二相流体处于水包油状态时,钢管内的摩擦压降比有机玻璃管内的大;而当处于油包水时,有机玻璃管内的摩擦压降则比钢管内的摩擦压降大。  相似文献   

18.
Experiments of high‐pressure dense‐phase pneumatic conveying of pulverized coal with different mean particle sizes using nitrogen were carried out in an experimental test facility with a conveying pressure of up to 4 MPa. The effects of three representative operating parameters (solids‐to‐gas mass flow ratio, conveying pressure, mean particle size) on the total pressure drop were examined. The pressure drops across the horizontal and vertical bends were analyzed by experimental and analytical calculation. The results show that the pressure drop due to gas friction is of much less significance, while the pressure drop due to the solids friction component of the total pressure drop dominates. There exists a relationship between the pressure drop due to solids kinetic energy loss and mass flux of solids.  相似文献   

19.
袁娟 《化工进展》2019,38(z1):265-269
由传热设计软件HTRI7.0对石油化工装置中常用的卧式热虹吸再沸器的工艺设计过程进行详细介绍。文章主要研究了卧式热虹吸再沸器基于压力平衡下的再沸器安装高度的计算方法及步骤,得出了卧式热虹吸再沸器的阻力损失包括再沸器入口管线阻力损失、再沸器内的阻力损失和再沸器出口管线阻力损失三部分,其中,再沸器出口管线为两相流,其阻力损失计算采用分离模型计算的误差小,准确度高。根据上述工艺设计方法,以某甲醇制烯烃(MTO)装置中一台水汽提塔再沸器为例,分析了该再沸器开工时出口管线振动的原因是由于推动力过大导致两相流流型为不稳定流型从而引起操作不稳定,并给出合理的改造和解决方案,即在再沸器入口管线增加手动调节阀。  相似文献   

20.
水力喷射空气旋流器(WSA)是一种新型高效的气液传质反应设备。采用雷诺应力模型和VOF两相流模型较好地模拟了WSA的气相压降特性、液相回流比和射流雾化过程,并讨论分析了雾化过程的机理。模拟和实验研究表明,WSA的气相压降随着进口气速的增加先后出现低压降区、压降突跳区、压降过渡区和高压降区4个特征区域,并给出了不同压降区域之间转折点气速的计算方法。射流在这4个压降区域里,分别表现为稳态射流、变形与袋式破碎、袋式破碎与剪切雾化和剪切雾化与离心分离等流态。射流在压降过渡区与高压降区的转折点左右实现充分雾化并达到最大相间传质面积。研究结果为建立基于WSA压降特性的射流雾化与流场调控方法提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号