首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 62 毫秒
1.
抽水蓄能机组甩负荷试验时尾水锥管压力   总被引:2,自引:2,他引:0  
抽水蓄能机组水力调节过渡过程计算控制核心要求之一是尾水锥管压力不超过设计值。设计值是根据水力过渡过程理论的一维数值模拟\  相似文献   

2.
深井离心泵内部非定常流动的压力脉动特性分析   总被引:5,自引:4,他引:1  
为了分析深井离心泵内部的非定常压力脉动特性,该文基于标准k-ε湍流模型和滑移网格模型,应用SIMPLEC算法,在CFD软件Fluent中对深井离心泵内部全流场进行三维非定常数值计算,得到了额定工况下流道内不同位置的压力脉动特性,并通过快速傅里叶变换进行了频域分析。结果表明,网格数对数值计算结果影响较大;在叶轮出口与导叶进口交界处,叶轮叶片与导叶叶片的动静耦合是产生压力脉动的原因;压力脉动周期与叶轮叶片数相关,导叶叶片数对压力脉动周期影响较小;叶片通过频率是影响压力脉动的主要因素。该文为改善泵体结构,进一步提高深井离心泵的使用可靠性提供了依据。  相似文献   

3.
为研究混流泵启动瞬态过程规律,建立了混流泵启动过程瞬态外特性和压力脉动测量系统,探究不同启动时间和不同流量下瞬态压力脉动的时频特性。通过变频器设置启动时间,分别采用LWGY-250型涡轮流量计和MPM480型压力传感器进行瞬态流量和瞬态压力测量,并基于小波变换对启动过程的非平稳压力脉动信号进行分析。研究结果表明,在启动过程中,随着泵转速增加,流量和扬程曲线均可近似分为缓慢上升、快速上升而后缓慢趋于稳定3个阶段,且每个阶段完成时间均与启动时间长短呈正相关。启动结束时刻,由角加速度与低工况运行共同引起的压力冲击现象与流量大小和启动时间有关。流量一定时,启动时间越短,压力冲击越显著;启动时间一定时,流量越大,进口压力冲击越小甚至消失,而叶轮中部与出口的压力冲击愈加明显;1 s启动且稳定工况为1.2倍设计流量时,叶轮中部与出口的最大冲击压力值分别可达37和28 kPa。对于快速启动,流量对启动过程瞬态压力变化无影响,在启动结束后流量对压力变化影响开始显现,当压力趋于平稳时,2种不同流量下叶轮中部的压力差约为30 kPa;对于慢速启动,流量对启动特性的影响在启动过程便有明显体现,在启动结束时刻,叶轮中部和出口的压力峰值均下降15 kPa。启动过程中,叶轮主频为叶频及其倍频,其变化趋势与转速变化一致。快速启动条件下,在启动结束时刻主频压力幅值存在由压力冲击造成的极大值。研究成果可为揭示瞬态运行特性及优化、设计瞬态工作水泵提供参考。  相似文献   

4.
液力透平非定常压力脉动的数值计算与分析   总被引:7,自引:3,他引:4  
液力透平内部流场的非定常压力脉动是影响机组运行稳定性的关键因素之一,为了研究液力透平内部压力脉动,采用流场分析软件CFX对液力透平内部流场进行了三维非定常数值模拟,通过设置监测点,得到了不同位置处的压力脉动结果,并对压力脉动进行了频域分析。结果表明,液力透平内部压力沿着流道逐渐减弱;蜗壳环形部分入口位置和割舍处压力脉动较小,割舍前端和蜗壳中部位置处压力脉动较大,压力脉动主频为转频的2倍;叶轮内部的压力脉动在液力透平各过流部件的脉动中最为强烈,最大压力脉动发生在叶轮中间位置,压力脉动主频为叶频的2倍;尾水管内的压力脉动沿着尾水管流道逐渐减弱,压力脉动主频与蜗壳内部的压力脉动主频相同,为转频的2倍。  相似文献   

5.
水轮机频繁经历变负荷工况转换过程,使得机组在较短时间内工作参数急剧变化,严重影响电站稳定运行。该研究以某贯流式水轮机为研究对象,在考虑自由液面和水体重力的情况下,采用动网格技术对贯流式水轮机相同出力范围下的减、增负荷过渡过程的动态特性进行分析。研究结果表明:由于增负荷和减负荷过渡过程的起始工况导致起始流动状态不同,因此在相同出力时,机组内的流动分布不同,减负荷过程尾水管内的涡流面积及强度明显小于增负荷工况,且尾水管涡带尺度也明显小于增负荷过程;相比于增负荷过程,减负荷过程中转轮叶片大范围的低压区极易引发空化;机组内的水压力脉动主要以尾水管涡带引起的0.1fn(fn为转频)低频压力脉动和转轮的旋转引起3fn的高频压力脉动为主,增负荷过程的压力脉动幅值明显大于减负荷过程,两种压力脉动共同作用,使得贯流式水轮机主要振动区域集中于转轮。研究结果对贯流式水轮机的设计与运行具有一定的指导意义。  相似文献   

6.
当水轮发电机组处于飞逸状态时,水轮机内部会出现严重的不稳定现象,容易引起机组的振动。贯流式水轮机因为水头低、流量大、通道短等特点,其过渡过程与常规的立式水轮机有许多不同之处。基于此,该文通过CFX16.0和Fortran程序的二次开发建立了水轮机飞逸过程的数值计算方法,对贯流式水轮机的飞逸过程进行了数值模拟,获得了转速、流量、力矩、轴向力等外特性参数在飞逸过程中的变化历程以及水轮机内部流场的动态特性。结果表明:计算得到的最大飞逸转速为2 190 r/min与试验测得的结果较为接近,误差不超过2.5%,验证了该数值方法的可靠性;飞逸过程中其余外特性参数的变化规律均符合高比转速水轮机飞逸过程的流动规律;在飞逸过程中,由于转速和流量的增加使得水轮机转轮进口相对液流角降低,水流在叶片吸力面进水侧靠近叶缘处发生撞击形成高压,在叶片压力面进水侧叶缘处出现脱流产生负压,并随着转速的升高,高压区和低压区逐渐增大,转轮叶片受力变得极为不均匀容易引起疲劳破坏;同时,转速的增加使得转轮出口环量增加,在尾水管内部将会形成偏心的螺旋涡带,引起了强烈的低频压力脉动,振幅最大可达到试验水头的104%,不利于机组的安全稳定运行。  相似文献   

7.
离心泵快速变工况瞬态过程特性模拟   总被引:2,自引:2,他引:0  
为研究离心泵在不同工况点快速切换过程中的瞬态特性,该文以一台低比转速离心泵为研究对象,对其工况流量突然减小的瞬态过程,分别采用理论分析和数值计算的方式进行了外特性预测和内流场仿真研究。首先基于叶轮机械广义欧拉方程式,对离心泵模型在流量突然减小瞬态过程中的附加理论扬程进行了定量计算与分析。结果表明,同等条件下,变工况过程结束后的稳定流量越小,附加理论扬程越大,瞬态效应愈发明显;同时该瞬态过程后期的瞬态效应比前期更为明显。动静干涉效应对泵出口流动参数产生显著影响,而对泵进口流动参数的影响并不明显;动静干涉效应对小流量工况时各个流动参数的影响将尤为显著。叶片与隔舌相对位置最近时,计算扬程最小;当隔舌位于叶轮流道中间位置稍后时,计算扬程最大。同一个转动周期(T)内,选取叶片转过隔舌后的0.225 T和0.825 T位置进行单次定常计算可取得较高精度的数值预测结果。动静过流部件和粘性效应使得叶轮和蜗壳内的轴向速度分布规律完全相反。瞬态过程中流体加速效应使得瞬态流场演化整体上滞后于准稳态流场。  相似文献   

8.
为探明泵内气液两相瞬态流动特征及自吸过程中吸水管液面震荡上升机理,该研究基于欧拉-欧拉多相流均相模型及标准k-ε湍流模型,采用开放型进、出口边界,对某外混式自吸离心泵在变转速启动条件下的自吸过程进行了数值模拟,分析了吸水管液面变化和主要过流部件内气液两相分布等瞬态特征。结果表明,开放型边界条件可以准确捕捉自吸过程中吸水管内液面震荡上升现象,与试验结果吻合良好。自吸过程包含3个阶段:快速吸入阶段对应吸水室内初始储液被快速吸入叶轮并将叶轮内气体排出,占自吸总用时的11.7%;震荡排气阶段是泵自吸过程的主要阶段,占总自吸时间的61.3%,该阶段内气液分离室内液体反复进入蜗壳和叶轮外缘区域,参与气液掺混及气液分离过程,完成自吸排气,过流部件内气液两相占比及吸水管液面震荡均近似呈0.25 s的周期性变化,叶轮内气相占比周期性变化和液柱惯性是导致该自吸阶段吸水管内液面震荡的主要原因;加速排气阶段为自吸末期,吸水管内液体加速进入叶轮,将泵内气体快速排出,其历时占总自吸时间的27%。研究结果可为自吸泵设计及性能优化提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号