首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

2.
Phosphoraneiminato Complexes of Hafnium. Crystal Structures of [Hf(NPPh3)4] · 3 THF and [Hf(NPPh3)2Cl2(HNPPh3)2] The phosphoraneiminato complexes [Hf(NPPh3)4] · 3 THF ( 1 · 3 THF) and [Hf(NPPh3)2Cl2(HNPPh3)2] ( 2 ) have been prepared as colourless, moisture sensitive single crystals by reactions of hafnium tetrachloride with [CsNPPh3]4 · 2 toluene in tetrahydrofurane solutions by application of different ratios of the educts. Both complexes are characterized by IR spectroscopy and X‐ray crystal structure determinations. 1 · 3 THF: space group P 1, Z = 4, lattice dimensions at 193 K: a = 2007.6(1); b = 2064.2(1); c = 2115.9(1) pm; α = 109.193(4)°; β = 111.285(4)°; γ = 96.879(4)°; R1 = 0.0506. 1 forms monomeric molecules with tetrahedral coordination of the nitrogen‐atoms of the (NPPh3)‐groups towards the Hafnium atom. The HfN distances of 200.9 pm in average correspond with double bonds. 2 : space group P 1, Z = 4, lattice dimensions at 193 K: a = 1444.0(1); b = 1928.1(1); c = 2455.8(2) pm; α = 67.273(8)°; β = 87.445(8)°; γ = 87.082(8)°; R1 = 0.0312. 2 has a monomeric molecular structure with octahedral coordination of the hafnium atom. The chlorine atoms are in trans position to one another, whereas the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are in trans position towards the nitrogen atoms ot the phosphorane imine molecules (HNPPh3). The HfN bond lengths of the (NPPh3) groups of 199.7 pm in average correspond with double bonds, whereas the HfN distances of the HNPPh3 molecules with bond lengths of 230.2 pm in average are of donor‐acceptor type.  相似文献   

3.
Phosphoraneiminato Complexes of Zirconium: Crystal Structures of [ZrCl3(NPPh3)(HNPPh3)2] and [ZrCl2(NPPh3)2(HNPPh3)2] The phosphoraneiminato complexes [ZrCl3(NPPh3)(HNPPh3)2] ( 1 ) and [ZrCl2(NPPh3)2(HNPPh3)2] ( 2 ) have been obtained by reaction of [ZrCl4(THF)2] with [CsNPPh3]4 in THF solution to give colourless moisture sensitive crystals which are characterized by X‐ray structure determinations. [ZrCl3(NPPh3)(HNPPh3)2] ( 1 ): Space group P 1, Z = 2, lattice dimensions at 193 K: a = 1209.4(2); b = 1480.8(2); c = 1814.2(2) pm; α = 71.203(13)°, β = 71.216(13)°, γ = 74.401(13)°; R = 0.0476. The zirconium atom of 1 is oktahedrally coordinated by the three chlorine atoms in meridional arrangement and by the three nitrogen atoms of the (NPPh3) ligand and of the two phosphane imine molecules HNPPh3. The ZrN bond distance of the (NPPh3) group (193.5 pm) corresponds with a double bond. [ZrCl2(NPPh3)2(HNPPh3)2] ( 2 ): Space group P 1, Z = 4, lattice dimensions at 193 K: a = 1447.6(2); b = 1925.7(2), c = 2457.0(2) pm; α = 67.317(12)°, β = 87.376(12)°, γ = 87.103(13)°; R = 0.0408. The zirconium atom in 2 is octahedrally coordinated by the two chlorine atoms in trans position, and by the nitrogen atoms of the two (NPPh3) groups as well as by the two HNPPh3 molecules. The ZrN distance of the (NPPh3) ligands (198.9 and 202.0 pm) suggest some π‐interaction between the zirconium and the nitrogen atoms.  相似文献   

4.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

5.
The Reactions of Europium and Yttrium with N‐Iodinetriphenylphosphoraneimine. Crystal Structures of [EuI2(DME)3], [Eu2I(NPPh3)5(DME)] and [Y2I(NPPh3)4(THF)4]+I3 When treated with ultrasound, the reaction of europium metal with INPPh3 in 1,2‐dimethoxyethane (DME) leads to the complexes [EuI2(DME)3] ( 1 ) and [Eu2I(NPPh3)5(DME)] ( 2 ) which are separated from each other by fractional crystallization. On the other hand, the reaction of yttrium metal with INPPh3 under similar conditions in THF gives the ionic phosphoraneiminato complex [Y2I(NPPh3)4(THF)4]+I3 ( 3 ). All complexes are characterized by crystal structure determinations. 1 : Space group P21, Z = 2, lattice dimensions at 188 K: a = 848.9(1); b = 1059.4(1); c = 1227.9(1) pm; β = 93.793(6)°; R = 0.0246. In the molecular structure of 1 the europium atom is eightfold coordinated with a bond angle I–Eu–I of 158.51°. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at 193 K: a = 1405.5(1); b = 1652.2(2); c = 2203.7(2) pm; α = 89.404(11)°; β = 72.958(11)°; γ = 78.657(11)°; R = 0.0391. In 2 the europium atoms are linked by the μ‐N‐atoms of two (NPPh3) groups to form a planar Eu2N2 four‐membered ring. One of the Eu atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Eu atom is coordinated by the N atom of one (NPPh3) group, by the terminally bounded iodine atom and by the oxygen atoms of the DME chelate, thus achieving a distorted octahedral surrounding. 3 · 61/2 THF: Space group P1, Z = 2, lattice dimensions at 103 K: a = 1739.7(2); b = 1770.1(2); c = 2153.8(3) pm; α = 74.929(15)°; β = 84.223(14)°; γ = 64.612(12)°; R = 0.0638. In the cation [Y2I(NPPh3)4(THF)4]+ of 3 the yttrium atoms are linked by the μ‐N atoms of two (NPPh3) groups as well as by the μ‐I atom. One (NPPh3) ligand and two THF molecules complete the distorted octahedral coordination at each yttrium atom.  相似文献   

6.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN] The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN] ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311.  相似文献   

7.
The Reaction of Ytterbium with N‐iodo‐triphenylphosphaneimine. Crystal Structures of [Yb2I(THF)2(NPPh3)4] · 2 THF, [YbI2(HNPPh3)(DME)2], and [{YbI2(DME)2}2(μ‐DME)] When treated with ultrasound, the reaction of ytterbium powder with INPPh3 in tetrahydrofuran leads to [YbI2(THF)4] and to the mixed‐valence phosphoraneiminato complex [Yb2I(THF)2(NPPh3)4] · 2 THF ( 1 ), which forms red single‐crystals. In the analogous reaction in 1,2‐dimethoxyethane (DME) only the ytterbium(II) iodide solvates [YbI2(HNPPh3)(DME)2] ( 2 ) and [{YbI2(DME)2}2 · (μ‐DME)] ( 3 ) can be isolated, which form yellow single crystals. All compounds were characterized by crystal structure analyses. 1 : Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1337.6(5), b = 1389.6(5), c = 2244.2(17) pm; α = 86.11(7)°, β = 88.06(7)°, γ = 88.63(4)°; R = 0.0759. In 1 the two ytterbium atoms are connected via the N atoms of two phosphoraneiminato groups (NPPh3) to form a planar Yb2N2 four‐membered ring. The structure can also be described as an ion pair consisting of [YbI(THF)2]+ and [Yb(NPPh3)4]. 2 : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 811.9(1), b = 1114.0(1), c = 1741.3(1) pm; β = 95.458(5)°; R = 0.0246. 2 forms molecules in which the ytterbium atom is coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions. The O atoms of the two DME‐chelates and the N atom of the phosphaneimine ligand HNPPh3 are in the equatorial positions. 3 : Space group P1, Z = 2, lattice dimensions at –70 °C: a = 817.5(1), b = 1047.7(1), c = 1115.5(2) pm; α = 90.179(10)°, β = 97.543(15)°, γ = 91.087(12)°; R = 0.0317. 3 has a dimeric molecular structure, in which the two fragments {YbI2(DME)2} are connected centrosymmetrically via a μ‐DME bridge. As in 2 , the ytterbium atoms are coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions, as well as with the two DME chelates and with one O atom each of the μ‐DME ligand in the equatorial positions.  相似文献   

8.
Crystal Structures of [TiF3(NPPh3)(HNPPh3)]2 and of HNPPh3 The phosphoraneiminato-phosphaneimine complex [TiF3(NPPh3)(HNPPh3)]2 was obtained by the reaction of TiF4 with Me3SiNPPh3 in boiling dichloromethane. It crystallizes from 1,2-dichloroethane as yellow crystals which include four molecules C2H4Cl2 per dimeric formula unit. Space group P21/n, Z = 2, structure solution with 7270 independent reflections, R = 0.060 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1417.5, b = 1896.9, c = 1586.6 pm, β = 101.22°. The compound forms centrosymmetric dimeric molecules via μ2-F bridges with TiF distances of 194.6 and 223.3 pm, the longer one being in trans-position to the N atom of the (NPPh3)? ligand. Its TiN bond length of 177.7 pm corresponds with a double bond. The TiN bond length of the HNPPh3 donor molecule of 213.4 pm is typical for a donor acceptor bond. According to the crystal structure determination the phosphaneimine HNPPh3 forms monomeric molecules without intermolecular hydrogen bridges with a PN bond length of 152.4 pm. Space group P21/c, Z = 4, structure solution with 3229 independent reflections, R = 0.062 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1460.4, b = 928.9, c = 1096.6 pm, β = 93.35°.  相似文献   

9.
N‐chlorotriphenylphosphaneimine and its Application as an Educt for the Synthesis of Asymmetric PNP Cations. Crystal Structures of Ph3PNCl and [Ph3PNPEt3]Cl Ph3PNCl ( 1 ) originates in good yield as pale yellow crystals from the reaction of Ph3PNSiMe3 with phenyliodine dichloride. According to the crystal structure analysis 1 has a monomeric molecular structure without perceptible intermolecular contacts with distances P–N of 161.0 pm, N–Cl of 175.9 pm, and with a PNCl bond angle of 110.31°. 1 reacts with phosphines PR3 forming asymmetric PNP salts [Ph3PNPR3]Cl. This was tested by reactions with PEt3 and bis‐diphenyl phosphano ferrocene (DPPF). The crystal structure analysis of [Ph3PNPEt3]Cl ( 2 ) shows an almost symmetric PNP bridge with distances PN of 158.6 and 157.0 pm, and with a bond angle of 145.9°.  相似文献   

10.
Phosphoraneiminato Acetate Cluster of Copper and Zinc. Crystal Structures of [Cu4(NPEt3)2(O2CCH3)6] and [Zn4(NPEt3)2(O2CCH3)6] The anhydrous acetates of copper(II) and zinc react with the silylated phosphaneimine Me3SiNPEt3 in dichloromethane at 20 °C forming the mixed phosphoraneiminato acetate clusters [Cu4(NPEt3)2(O2CCH3)6] ( 1 ), which forms emerald crystals, and colourless [Zn4(NPEt3)2 · (O2CCH3)6] ( 2 ). In spite of analogous composition the structures of 1 and 2 are completely different. In the asymmetric unit of 1 three copper atoms of an almost isosceles triangle are linked via two nitrogen atoms of the NPEt3 groups to form a trigonal bipyramidal aggregate. One of these three copper atoms is chelated by an acetate group, another one is connected with the fourth copper atom via three μ2‐O2C–CH3 groups. The asymmetric units are associated via a μ2‐O2C–CH3 group and a μ3‐OC(O)CH3 group at a time so that infinite chains result. In 2 two zinc atoms are linked via the nitrogen atoms of the two NPEt3 groups to form an almost centrosymmetric four‐membered ring. Both nitrogen atoms of the four‐membered ring are connected with another zinc atom each. These zinc atoms again are linked with the zinc atoms of the Zn2N2 four‐membered ring via two μ2‐O2C–CH3 groups each and additionally coordinated with a terminal acetate ligand each.  相似文献   

11.
Reactions of LiNPPh3 with the Cyclooctatetraenide Complexes [Ln(C8H8)Cl(THF)2]2 of Cerium and Samarium. Crystal Structures of [LiNPPh3]6, [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3] (Ln = Ce, Sm) and [Li(THF)4][Sm(C8H8)2] LiNPPh3 reacts with the cyclooctatetraenide complexes [Ln(C8H8)Cl(THF)2]2 of cerium and samarium in tetrahydrofuran solution forming the phosphorane iminato complexes [Ln(C8H8)Li3Cl2(NPPh3)2(THF)3]. According to crystal structure analyses these complexes show heterocubane structures under participation of the lanthanoid metal atom, of the three Li atoms as well as of the two Cl und the two N atoms of the NPPh3 groups. The crystal structure of LiNPPh3 shows hexameric molecules with a Li6N6 polyhedron which is peripherally shielded by the phenyl groups. The structure of [Li(THF)4][Sm(C8H8)2], which has been isolated as a by-product, contains the samarium atom in a sandwichlike coordination by the two η8-C8H82– rings as it is also known from the corresponding anions with cerium and neodymium.  相似文献   

12.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

13.
Synthesis and Crystal Structure of [(Ph3PAu)3NPPh3][PF6]2, a Gold(I) Phosphoraneiminato Complex The photolytic reaction of Ph3PAuN3 with Cr(CO)6 in THF yields the phosphoraneiminato complex [(Ph3PAu)3NPPh3]2+ in low yield as well as the cluster cation [(Ph3PAu)8]2+ as the main product. The phosphoraneiminato complex crystallizes from CH2Cl2 with [PF6]? ions as [(Ph3PAu)3NPPh3][PF6]2·CH2Cl2 in the triclinic space group with a = 1200.8(1), b = 1495.6(2), 2053.5(5), α = 86.97(2)°, β = 82.79(1)°, γ = 81.87(2)°, and Z = 2. The phosphoraneiminato ligand bridges through its N atom three Au atoms, which itself are connected to each other by weak aurophilic interactions.  相似文献   

14.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

15.
Phosphoraneiminato Complexes of Titanium. Synthesis and Crystal Structures of CpTiCl2(NPMe3), [TiCl3(NPMe3)]2, [Ti2Cl5(NPMe2Ph)3], and [Ti3Cl6(NPMe3)5][BPh4] The title compounds are formed from Cp2TiCl2 and titanium tetrachloride, respectively, and the corresponding phosphane imino compounds Me3SiNPMe3 and Me3SiNPMe2Ph. The tetraphenyl borate salt yielded from the reaction of [Ti3Cl6(NPMe3)5]Cl with NaBPh4. All compounds form yellow crystals which are sensitive to moisture. They were characterized by IR-spectroscopy and crystal structure analyses. CpTiCl2(NPMe3) ( 1 ): Space group Pbca, Z = 8, solution of the structure with 1632 observed independent reflections, R = 0.037. Lattice dimensions at 19°C: a = 1202.6, b = 1224.2, c = 1766.7 pm. The molecules of the compound are monomeric with the (NPMe3)? ligand in almost linear array (bond angle Ti? N? P 170.7°). [TiCl3(NPMe3)]2 ( 2 ): Space group Pbca, Z = 8, structure solution with 698 observed independent reflections, R = 0.030. Lattice dimensions at ?60°C: a = 1140.5, b = 1112.2, c = 1589.4 pm. In 2 the titanium atoms, which occur in trigonal bipyramidal coordination, are linked by the N atoms of the (NPMe3)? groups to form a centrosymmetric dimer with Ti? N bond lengths of 184.3 and 208.2 pm. [Ti2Cl5(NPMe2Ph)3] · CH2Cl2 ( 3 ): Space group Pca21, Z = 4, structure solution with 8477 observed independent reflections, R = 0.051. The lattice dimensions at 20°C are: a = 1221.0; b = 1407.5, c = 2139.3 pm. 3 can be understood as a reaction product of TiCl2(NPMe2Ph)2 and TiCl3(NPMe2Ph). In the resulting, heavily distorted Ti2N2-four-membered ring the Ti? N bond lenghts are 1804., 194.4, 199.2, and 234.6 pm. The longest Ti? N bond is in trans-position to the N atom of the terminal (NPMe2Ph)- ligand, in which the Ti? N distance is 175.6 pm. .[Ti3CL6(NPMe3)5][BPh4] (4): Space group P21/n, structure solution with 2846 observed independent reflections, R = 0.062. The lattice dimensions at 20°C are: a = 1495.2, b = 2335.4, c = 155,8 pm, β = 93.28°. In the cation of 4 the three titanium atoms along with three (NPMe3)- groups with μ2- N functions and two (NPMe3)- groups with μ3- N functions form a nation number 6 with two terminal chlorine atoms.  相似文献   

16.
Phosphoraneiminato Complexes of Bismuth(III). Crystal Structures of [BiF2(NPEt3)(HNPEt3)]2 and [Bi2I(NPPh3)4]I3 [BiF2(NPEt3)(HNPEt3)]2 ( 1 ) has been obtained by the reaction of BiF3 with Me3SiNPEt3 at 100 °C and subsequent extraction with 1,2‐dimethoxyethane in the presence of traces of water forming pale‐yellow, moisture sensitive crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at –83 °C: a = 2105.0, b = 1195.8, c = 728.2 pm, β = 92.55°. 1  forms centrosymmetric dimeric molecules, in which the Bi atoms are linked via Bi–N bonds of varying length (213.9 and 240.1 pm) of the NPEt3 groups to form a Bi2N2 four‐membered ring. The longer one of the two Bi–N bonds is trans to one terminal F atom. [Bi2I(NPPh3)4]I3 ( 2 ) has been obtained by the reaction of bismuth with N‐iodine triphenylphosphaneimine in dichloromethane forming red crystals. Crystal structure determination of 2 · 2.5 CH2Cl2: Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1542.6, b = 2409.1, c = 2173.5 pm, β = 105.82°. In 2 the Bi atoms are linked via two N atoms of two NPPh3 groups to form a non‐planar Bi2N2 four‐membered ring with a fold angle of 27° along the N…N connection line. The two remaining NPPh3 groups are terminally connected and bent in the same direction. The iodide ion caps the two Bi atoms so that a [Bi2I(NPPh3)4]+ cation is formed.  相似文献   

17.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

18.
Phosphorane Iminato Complexes of Sulfur. Synthesis and Crystal Structures of [SO(Cl)(NPPh3)], [SO2(Cl)(NPPh3)], and [SCl(NPPh3)2]Cl The title compounds have been prepared by the reaction of Me3SiNPPh3 with SOCl2, SO2Cl2, and SCl2, respectively. They form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy and by crystal structure determinations. [SO(Cl)(NPPh3)]: Space group P21/n, Z = 4, structure determination with 2 434 observed unique reflections, R = 0.047. Lattice dimensions at 19°C: a = 1 304.8, b = 996.5, c = 1 339.5 pm, β = 93.75°. The compound forms monomeric molecules with a remarkably long S? Cl bond of 234.2 pm and distances SN and PN of 154.6 and 161.6 pm, respectively, which agree with double bonds. [SO2(Cl)(NPPh3)]: Space group P21/n, Z = 4, structure solution with 2 872 observed, unique reflections, R = 0.047. Lattice dimensions at 20°C: a = 956.9, b = 1 909, c = 1 002.0 pm, β = 106.06°. The compound forms monomeric molecules with distances S? Cl of 207.1 pm, SN of 154.5 pm, and PN of 161.6 pm. [SCl(NPPh3)2]Cl: Space group P21/c, Z = 4, structure solution with 5 224 observed, unique reflections, R = 0.042. Lattice dimensions at 20°C: a = 1 108.6, b = 1 603.8, c = 1 840.5 pm, β = 99.98°. The compound forms ions [SCl(NPPh3)2]+ and Cl?. In the cation the sulfur atom is φ-tetrahedrally coordinated with a long S? Cl distance of 248.5 pm and SN bond lengths of 154.5 and 156.0 pm.  相似文献   

19.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

20.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号