首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exact chirped bright and dark soliton-like solutions of generalized nonlinear Schrödinger equation including linear and nonlinear gain(loss) with variable coefficients describing dispersion-management or soliton control is obtained detailedly in this paper. To begin our numerical studies of the stability of the solutions, we present a periodically distributed dispersion management or soliton control system as an example. It is found that both the bright and dark soliton-like solutions are stable during propagation in the given system. The numerical results are well in accordance with those obtained by analytical methods.  相似文献   

2.
基于描述非均匀光纤系统的复系数Ginzburg-Landau方程,通过拟解法得到了该方程的精确啁啾组合孤波解,并分析了该解的特性.通过大量的数值模拟,发现在有限的初始扰动下这些组合孤波解是在非均匀光纤系统中稳定的.最后,为了进一步研究组合孤波解的稳定性,我们还探讨了组合孤波的相互作用.  相似文献   

3.
We consider a generalized fifth-order KdV equation with time-dependent coefficients exhibiting higher-degree nonlinear terms. This nonlinear evolution equation describes the interaction between a water wave and a floating ice cover and gravity-capillary waves. By means of the subsidiary ordinary differential equation method, some new exact soliton solutions are derived. Among these solutions, we can find the well known bright and dark solitons with sech and tanh function shapes, and other soliton-like solutions. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous KdV system supporting high-order dispersive and nonlinear effects.  相似文献   

4.
宗丰德  戴朝卿  杨琴  张解放 《物理学报》2006,55(8):3805-3812
基于推广的立方非线性Klein—Gordon方程对一般形式的变系数非线性Schrodinger方程进行研究,讨论了无啁啾情形的孤子解,发现了包括亮、暗孤子解和类孤子解在内的一些新的精确解.同时对基本孤子的色散控制方法进行了简单讨论.作为特例,常系数非线性Schrodinger方程和两类特殊的变系数非线性Schrodinger方程的结果和已知的形式一致.此外,还研究了一个周期增益或损耗的光纤系统,得到了有意义的结果.  相似文献   

5.
In this work, we propose an efficient generalization of the trial equation method introduced recently by Liu [Appl. Math. Comput. 217 (2011) 5866] to construct exact chirped traveling wave solutions of complex differential equations with variable coefficients. The effectiveness of the proposed method has been tested by applying it successfully to the quintic derivative nonlinear Schrödinger equation with variable coefficients. As a result, a class of chirped soliton-like solutions including bright and kink solitons is derived for the first time. Compared with previous work of Liu in which unchirped solutions were given, we obtain exact chirped solutions which have nontrivial phase that varies as a function of the wave intensity. These localized structures characteristically exist due to a balance among the group-velocity dispersion, self-steepening and competing cubic-quintic nonlinearity. Parametric conditions for the existence of envelope solutions with nonlinear chirp are also presented. It is shown that the chirping can be effectively controlled through the variable parameters of group-velocity dispersion and self-steepening.  相似文献   

6.
In this letter, exact chirped multi-soliton solutions of the nonlinear Schr(o)dinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also,under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.  相似文献   

7.
By means of the similarity transformation connecting with the solvable stationary equation, the self-similar combined Jacobian elliptic function solutions and fractional form solutions of the generalized nonlinear Schrödinger equation (NLSE) are obtained when the dispersion, nonlinearity, and gain or absorption are varied. The propagation dynamics in a periodic distributed amplification system is investigated. Self-similar cnoidal waves and corresponding localized waves including bright and dark similaritons (or solitons) for NLSE and arch and kink similaritons (or solitons) for cubic-quintic NLSE are analyzed. The results show that the intensity and the width of chirped cnoidal waves (or similaritons) change more distinctly than that of chirp-free counterparts (or solitons).  相似文献   

8.
By means of the similarity transformation, we discuss the generalized nonlinear Schrödinger equation exhibiting inhomogeneous dispersion, nonlinearity and gain or loss at the same time. Explicit bright and dark multi-similariton solutions are obtained. Based on them, we investigate transmission control using the dispersion decreasing fiber with potential applications to the design of high-speed optical devices and amplifiers and pulse compressors, and the development of tunable sources of amplitude modulated light.  相似文献   

9.
By means of the similarity transformation, we obtain exact bright and dark similariton-pair solutions in nonlinear waveguides for the generalized nonlinear Schr?dinger equation exhibiting spatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. Then we investigate the interaction behaviors of these solitonic similaritons in a periodic distributed amplification system.  相似文献   

10.
李画眉 《中国物理》2005,14(2):251-256
利用映射方法和一个适当的变换,得到大量的有弱偏置磁场及含时激光场中的非线性Gross-Pitaevskii方程的新解,这些解包括椭圆函数解,椭圆函数叠加解,三角函数解,亮孤子解,暗孤子解和类孤子解。  相似文献   

11.
M. Idrish Miah 《Optik》2011,122(1):55-57
We study the nonlinear wave propagation in an inhomogeneous optical fiber core in the normal dispersive regime. In order to include the inhomogeneous physical effects, the nonlinear Schrödinger equation (NLSE), which governs the solitary pulse propagation in optical fiber, is modified by adding terms for phase modulation and power gain or loss. The modified NLSEs are bilinearized and exact dark soliton solutions are obtained. The results are discussed.  相似文献   

12.
In this paper, we study the generalized higher-order nonlinear Schrödinger equation analytically. We use two integral schemes for conducting this study. Dark, bright, combined dark–bright optical, singular soliton, soliton-like and trigonometric function solutions are successfully constructed. We give the constraint conditions for the existence of valid solutions. The 2D, 3D and the contour graphs for the dark and bright solitons are plotted.  相似文献   

13.
With the help of two kinds of similarity transformations connected with the elliptic equation, at first we analytically derive spatiotemporal self-similar solutions of the (3 + 1)-dimensional inhomogeneous nonlinear Schrödinger equation with the linear and nonlinear gain. Then we give out the mutually exclusive parameter domains for bright and dark similaritons. Finally, we discuss nonlinear tunneling effects for spatiotemporal similaritons passing through the nonlinear barrier or well. Results show that bright and dark similaritons in the normal and anomalous dispersion regions have opposite dynamic behaviors.  相似文献   

14.
This paper studies chirped optical solitons in nonlinear optical fibers. However, we obtain diverse soliton solutions and new chirped bright and dark solitons, trigonometric function solutions and rational solutions by adopting two formal integration methods. The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method. These results are more general compared to Hadi et al(2018 Optik 172 545–53) and Yakada et al(2019 Optik197 163108).  相似文献   

15.
This article presents a brief review of dynamical models based on systems of linearly coupled complex Ginzburg-Landau (CGL) equations. In the simplest case, the system features linear gain, cubic nonlinearity (possibly combined with cubic loss), and group-velocity dispersion (GVD) in one equation, while the other equation is linear, featuring only intrinsic linear loss. The system models a dual-core fiber laser, with a parallel-coupled active core and an additional stabilizing passive (lossy) one. The model gives rise to exact analytical solutions for stationary solitary pulses (SPs). The article presents basic results concerning stability of the SPs; interactions between pulses are also considered, as are dark solitons (holes). In the case of the anomalous GVD, an unstable stationary SP may transform itself, via the Hopf bifurcation, into a stable localized breather. Various generalizations of the basic system are briefly reviewed too, including a model with quadratic (second-harmonic-generating) nonlinearity and a recently introduced model of a different but related type, based on linearly coupled CGL equations with cubic-quintic nonlinearity. The latter system features spontaneous symmetry breaking of stationary SPs, and also the formation of stable breathers.  相似文献   

16.
Based on the computerized symbolic system Mapte, a new generalized expansion method of Riccati equation for constructing non-travelling wave and coefficient functions‘ soliton-like solutions is presented by a new general ansatz. Making use of the method, we consider the (2 1)-dimensional breaking soliton equation, ut buxxy 4buvx 4buxv = O,uv=vx, and obtain rich new families of the exact solutions of the breaking sofiton equation, including then on-traveilin~ wave and constant function sofiton-like solutions, singular soliton-like solutions, and triangular function solutions.  相似文献   

17.
Based on the computerized symbolic system Maple, a new generalized expansion method of Riccatiequation for constructing non-travelling wave and coefficient functions‘ soliton-like solutions is presented by a new generalansatz. Making use of the method, we consider the (2 1)-dimensional breaking soliton equation, ut buxxy 4buvx 4buxv = 0, uy = vx, and obtain rich new families of the exact solutions of the breaking soliton equation, including thenon-travelling wave and constant function soliton-like solutions, singular soliton-like solutions, and triangular functionsolutions.  相似文献   

18.
在光纤零群速色散区传输的光孤子波   总被引:1,自引:0,他引:1  
刘山亮 《光学学报》1999,19(6):33-738
通过对超短光脉冲在单模光纤中传输方程的分析研究,给出了在零群速色散传输方程的亮,反波解。结果表明,超短光脉中在光纤的零群群速色散仍能以亮,暗孤波的形式传输,且不存在孤子自频移现象。  相似文献   

19.
We investigate the exact bright and dark solitary wave solutions of an effective 1D Bose-Einstein condensate (BEC) by assuming that the interaction energy is much less than the kinetic energy in the transverse direction. In particular, following the earlier works in the literature Pérez-García et al. (2004) [50], Serkin et al. (2007) [51], Gurses (2007) [52] and Kundu (2009) [53], we point out that the effective 1D equation resulting from the Gross-Pitaevskii (GP) equation can be transformed into the standard soliton (bright/dark) possessing, completely integrable 1D nonlinear Schrödinger (NLS) equation by effecting a change of variables of the coordinates and the wave function. We consider both confining and expulsive harmonic trap potentials separately and treat the atomic scattering length, gain/loss term and trap frequency as the experimental control parameters by modulating them as a function of time. In the case when the trap frequency is kept constant, we show the existence of different kinds of soliton solutions, such as the periodic oscillating solitons, collapse and revival of condensate, snake-like solitons, stable solitons, soliton growth and decay and formation of two-soliton bound state, as the atomic scattering length and gain/loss term are varied. However, when the trap frequency is also modulated, we show the phenomena of collapse and revival of two-soliton like bound state formation of the condensate for double modulated periodic potential and bright and dark solitons for step-wise modulated potentials.  相似文献   

20.
With the help of the similarity transformation and the solvable stationary nonlinear Schrödinger equation (NLSE),we obtain exact chirped and chirp-free self-similar cnoidal wave and solitary wave solutions of the generalized NLSE exhibitingspatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. As an example, we investigate their propagationdynamics in a nonlinear optical system, and present a series of interesting properties of optical waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号