首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
直接甲醇燃料电池用磺化聚醚醚酮质子交换膜   总被引:1,自引:0,他引:1  
在回顾近年来直接甲醇燃料电池用磺化聚醚醚酮(SPEEK)质子交换膜的发展历程基础上,分别综述了制膜材料SPEEK的合成和SPEEK质子交换膜的制备研究进展,重点总结了SPEEK质子交换膜的电导率和阻醇性能及其稳定性的影响因素和影响规律,其中包括制膜材料和溶剂以及工艺、SPEEK的共混改性、SPEEK的填充改性或多层复合结构的影响,进而分析了高性能SPEEK质子交换膜的开发研究前景.  相似文献   

2.
许乐波  郭强 《材料导报》2006,20(Z1):291-293
概述了近几年来燃料电池用磺化聚醚醚酮(SPEEK)质子交换膜的研究进展,分别从聚醚醚酮(PEEK)磺化制备SPEEK、SPEEK薄膜的制备和改性SPEEK薄膜等几个方面总结了SPEEK质子交换膜的研究结果,并分析展望了研究工作的发展趋势.  相似文献   

3.
概述了近几年来燃料电池用磺化聚芳醚酮质子交换膜改性的研究进展,分别从共混法和有机/无机杂化法等两个方面总结了磺化聚芳醚酮质子交换膜改性的研究结果,并展望了今后的研究趋势。  相似文献   

4.
5.
磺化聚醚醚酮膜(SPEEK)是直接甲醇燃料电池(DM FC)用质子交换膜的候选材料之一,但是当温度和磺化度(D S)较高时,该膜在甲醇水溶液中溶胀非常严重,甚至溶解,其使用温度受到限制。将磺化度为50.11%的SPEEK和聚苯胺(PAN I)共混制膜,希望利用酸碱之间的相互作用对SPEEK进行改性。研究结果表明,PAN I的加入使SPEEK/PAN I共混膜的使用温度有较大提高,并且该膜还具有较高的电导率和较好的阻醇性能。  相似文献   

6.
为进一步提高磺化聚醚醚酮质子交换膜的尺寸稳定性、耐氧化性和质子电导率,从侧链结构出发设计制备了一种新的侧链型磺化聚醚醚酮质子交换膜.以磺化聚醚醚酮为聚合物主链,利用N,N′-羰基二咪唑(CDI)的活化作用将1-乙醇胺(MEA)与磺酸基团反应,从而延长侧链长度,再通过1,3-丙磺酸内酯的开环反应引入磺酸功能基团,最后采用溶胶-凝胶法制备出一系列新的侧链型磺化聚醚醚酮质子交换膜.对所制备的侧链型磺化聚醚醚酮质子交换膜分别进行了结构和性能表征.结果表明,该类侧链型磺化聚醚醚酮质子交换膜中产生了亲水/疏水相分离结构,并且具有适当的吸水率和较低的溶胀度(9.2%).该类质子交换膜具有更高的质子电导率,其中60℃时支化程度为80%的侧链型磺化聚醚醚酮质子交换膜的电导率高达0.096 S/cm.此外,制备的侧链型磺化聚醚醚酮质子交换膜也具有良好的机械性能、氧化稳定性和热稳定性.  相似文献   

7.
为了提高磺化聚酰亚胺膜的综合性能,特别是水解稳定性,文中以60Co为辐射源,对磺化聚酰亚胺进行γ射线辐射。辐射后,膜的相对分子质量通过凝胶渗透色谱进行测试,测试结果显示,辐射后膜的数均分子量和重均分子量都有明显提高。膜的分子结构由核磁和红外光谱测试确定,结果表明辐射和未辐射膜的核磁谱图和红外光谱谱图基本不变。对辐照不同时间交联膜的含水量、尺寸稳定性、质子传导率、膜稳定性和力学性能进行了测试,结果显示,24 h辐射处理能提高膜的综合性能,特别是水解稳定性得到了显著提高,膜在100℃去离子水中可以稳定存在960 h,是未交联膜的5.6倍。辐射对质子交换膜的氧化稳定性和力学性能都有提高,甲醇渗透率有所减小。辐射24 h的磺化聚酰亚胺膜仍保持了较高的质子传导率,在80℃去离子水中膜的导电率仍可高达到0.145 S/cm。实验表明适度辐射交联是提高磺化聚酰亚胺膜综合性能的一种有效方法。  相似文献   

8.
用磺化聚醚醚酮(SPEEK)替代传统的Nafion膜制备直接甲醇燃料电池(DMFC)用质子交换膜,能降低甲醇渗透率,提高质子导率,从而提高电池性能。介绍了SPEEK膜的制备方法及其缺点,综述了SPEEK膜有机和无机改性的方法,并提出了SPEEK膜多元改性的新设想。  相似文献   

9.
孙彩霞  马磊  徐杰  刘晓海  张涛 《功能材料》2004,35(Z1):1813-1818
聚酰亚胺是一类非常重要的高性能聚合物材料,在许多领域都有非常广泛的应用.本文综述了磺化聚酰亚胺作为质子交换膜燃料电池中膜材料的研究概况,总结了改善磺化聚酰亚胺溶解性及其薄膜水解稳定性和质子电导率等性能的方法.  相似文献   

10.
李笑晖  潘牧  沈春晖  袁泉  杨洁 《材料导报》2005,19(2):36-38,42
燃料电池商业化的实现要求要有性价比高的质子交换膜,磺化SEBS以其低廉的价格、独特的微相结构、良好的力学性能和高的质子导电率正成为大家关注的焦点.着重评述了磺化SEBS质子交换膜近年来的研究进展,较为详细地讨论了其制备、微相结构、性能特点和改性后在直接甲醇燃料电池等方面的应用,并扼要阐述了其发展方向.  相似文献   

11.
用FT—IR、DSC、WAXD等方法研究了四种不同方法制备的聚醚砜醚酮酮(PESEKK)样品的结构与性能。研究表明,低温溶液缩聚得到的PESEKK为半结晶聚合物,其非晶部分较易溶于二氯乙烷等强极性有机溶剂;半结晶聚合物熔融冷却过程中很难再结晶;半结晶聚合物熔融淬冷,转变为无定型聚合物;熔融拉丝取向,也不能促使其结晶,但非晶链段被取向使IR分析4000cm^-1-1700cm^-1出现强烈倍频吸收峰;用DCE处理半结晶聚合物得到结晶度更高的聚合物样品。  相似文献   

12.
以对二溴苯和苯酚为原料合成高纯度1,4-二苯氧基苯(DPB),以1.2-二氯乙烷(DCE)为溶剂,无水三氯化铝/N、N-二甲基甲酰胺(DMF)为复合催化溶剂体系,与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)进行溶液低温缩聚,得到一类聚芳醚醚酮酮(PEEKK)聚合物.用FT-IR, 1H-NMR,DSC,TGA,WAXD等分析技术对聚合物进行表征.结果表明,该聚合物有较好的结晶性和良好的热稳定性。  相似文献   

13.
多聚代联苯型聚芳醚酮膜的透气性研究   总被引:2,自引:0,他引:2  
从分子设计出发,合成了自由体积大,玻璃化温度高和优异综合性能的多聚代联苯型聚芳醚酮。对其均质膜的气体渗透性进行了测试,并考察了共聚物组成对膜性能的影响。  相似文献   

14.
用邻甲酚或间甲酚与4,4‘-二氯二苯砜合成2,2‘-二甲基-4,4‘-二苯氧基二苯砜(o-CH3-DPODPS)或3,3‘-二甲基-4,4‘-二苯氧基二苯砜(m-CH3-DPODPS),然后与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)进行缩聚,得到一类新型含甲基侧基的聚芳醚砜醚酮酮聚合物.用FT-IR,^1H-NMR,DSC,TGA,X-ray等方法对单体和聚合物进行表征.结果表明,这种可溶性的非晶态聚合物具有较高的玻璃化转变温度Tg和较好的耐热性能.  相似文献   

15.
聚芳醚醚酮的热分解   总被引:1,自引:0,他引:1  
用高分辩裂解色谱-质谱法研究聚芳醚醚酮的热分解,分离和鉴定了热分解产物,考察其组成分布及温度依赖性。结合热重数据和热分解动力学模型分析,进而讨论了聚芳醚醚酮的热分解机理。  相似文献   

16.
单分散聚醚酮齐聚物的合成与表征   总被引:1,自引:0,他引:1  
采用亲核与亲电两种合成路线合成了一系列的分散聚醚酮(PEK)齐聚物。利用示差扫描量热仪(DSC),广角X射线衍(WAXD)和小角X射线散射(SAXS)考查了齐聚物的热行为和结构特征。当齐聚物锭段达到足够长时,DSC曲线表现为多熔融峰,这可能是和矣物分子链的醚酮键不同位置有关。  相似文献   

17.
一种新型甲基芳杂环聚醚酮的合成及表征   总被引:1,自引:0,他引:1  
以自制的新型双酚单体4-(2-甲基-4-羟基苯基)二氮杂萘与4,4’-二氟二苯酮反应合成了一种新型聚芳醚酮,对其聚合条件作了初步探讨;并利用红外光谱、DSC对双酚单体和聚合物的结构、玻璃化转变温度进行了测试,该聚合物具有较高的玻璃化转变温度,Tg=247.97℃。  相似文献   

18.
以2,2’,6,6‘-四甲基-4,4’-二摹氧基二苯砜(o-M2DPODPS)为单体,与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)通过低温亲电溶液缩聚,合成了两种新型含双邻甲基取代结构的聚芳醚砜醚酮酮。用DSC、IR、WAXD、TGA、^1H-NMR等方法对聚合物进行了表征分析,考察了聚合物的溶解性能。结果表明,两种聚合物均为无定型聚集态,具有很高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性能。  相似文献   

19.
综述了各类多环聚芳醚酮的研究进展,指出其存在的问题,就其发展前景提出了一些思路。  相似文献   

20.
在无水A lC l3及DM F存在下,将4,4′-二(4-氯甲酰苯氧基)二苯砜(SPC l)、4,4′-二(3-氯甲酰苯氧基)二苯砜(SM C l)分别与2-甲基二苯醚(o-M DPE)和3-甲基二苯醚(m-M DPE)在1,2-二氯乙烷中进行低温溶液缩聚,合成了4种新型可溶性的甲基取代聚芳醚酮醚砜醚酮(M-PEKESEK)。DSC,TG,FT-IR及W AXD等测试表明,4种聚合物均为无定型结构,其玻璃化转变温度(Tg)介于157℃~167℃,在氮气气氛中5%的热失重温度(Td)均在465℃以上,易溶于氯仿和DM F、DM SO等强极性非质子有机溶剂中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号