首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以(聚苯乙烯(PS)-g-线型低密度聚乙烯(LLDPE))-g-马来酸酐(MAH)为相容剂,改变混合方法,制备了具有不同微观结构的尼龙6(PA6)/LLDPE/PS(60/20/20,质量分数)三元共混物。根据热力学、动力学因素,预判了共混物的微观结构;再结合扫描电镜和力学性能测试,考察了微观结构对力学性能的影响。结果表明,简单共混时,因界面张力的作用,在PA6中PS会包裹LLDPE形成壳核结构;该增容剂黏度大,增容时合适的混合方法,使其更易扩散至相界面,有利于阻碍PS包裹LLDPE,使两相独立分散;预判结果与测试结果相一致;壳核结构的出现,会掩盖LLDPE(核)的韧性,使材料呈现出硬而脆的特点;两相独立分散,在保证材料刚性的同时又能提高韧性;采用(PS-g-LLDPE)-g-MAH先与PS、LLDPE混合再与PA6混合的共混法时,增容效果最好,其缺口冲击强度相较于简单共混物提高了近5倍,材料整体表现出硬而韧的特点。  相似文献   

2.
RSMA增容PA6/PP共混物的形态结构与增容机理   总被引:15,自引:0,他引:15  
采用RSMA为增容剂制备了PA6/PP共混物,研究了RSMA增容PA6/PP共混物的形态结构和热行为以及晶态结构,并探讨RSMA增容PA6/PP共混物的增容机理结果表明,PA6/PP共混物为热力不相容的海岛型两相结构,RSMA的加入改善BPA6与PP相间的相容性,使两相分均匀,分散度提高。RSMA对PA/PP共混物的增容机理可用界面-分散相复合模型描述。  相似文献   

3.
PP-g-MAH对PA6/PP/TLCP三元共混物的增容改性作用   总被引:2,自引:0,他引:2  
研究了PP-g-MAH对PA6/PP/TLCP三元共混体系的增容作用以及对共混物流变性能和力学性能的影响。通过共混物的DSC、SEM、POM、流变性能和力学性能测试,结果表明,PP-g-MAH对共混体系有明显的增容作用,共混物的力学性能(拉伸强度和冲击强度)得到提高;由于TLCP的加入,共混物的熔体粘度大大低于PA6的熔体粘度。  相似文献   

4.
结合聚烯烃与聚苯乙烯间的Friedel-Crafts烷基化反应和聚烯烃熔融接枝马来酸酐(MAH)技术,制备了酸酐化线性低密度聚乙烯(LLDPE)/聚苯乙烯(PS)(70/30,质量比)增容母料。以该母料作为多相相容剂,考察了其对LLDPE/PS/尼龙6(PA6)(60/20/20,质量比)三元共混物微观结构、力学性能和流变性能的影响。红外测试结果表明,酸酐化LLDPE/PS增容母料中含有(LLDPE/LLDPE-g-PS)-g-MAH;三元共混物加入母料后有接枝物(LLDPE/LLDPE-g-PS)-gPA6生成。扫描电镜及力学性能测试结果显示,三元共混物加入质量分数为10%母料后两分散相粒径显著减小,三相之间从互相分离转变为互相连接;力学性能明显提高。动态流变测试结果表明,加入母料后三元共混物的储能模量(G')、损耗模量(G″)和复数黏度(η*)上升,损耗因子(tanδ)减小;三元简单共混物出现2个内耗峰,母料的增容作用可使2个内耗峰均消失。  相似文献   

5.
(PE-MA)-g-PA6对PA6/EPDM的共混增容以及形态结构与性能的影响   总被引:6,自引:0,他引:6  
本文研究了不同接枝率的增容剂PE-MA的用量对PA6/EPDM共混物的力学性能和形态结构的影响,并与PP-MA的增容效果作了比较。当PA6/EPDM/PE-MA为80/20/12时,共混物在干态常温下的Izod冲击强度是纯PA6的13倍。这时的分散相粒子变得细小,相界面摸糊弥散。PE-MA的增容效果远好于PP-MA。  相似文献   

6.
PA6/PP共混物的研究进展   总被引:3,自引:1,他引:3  
对PA6 /PP共混物的研究进展进行了综述。重点介绍了所用增容剂的种类及增容机理、共混体系结构和性能的研究状况 ,并对PA6 /PP共混物今后的研究方向提出了建议。  相似文献   

7.
综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。  相似文献   

8.
研究了不同配比的聚苯乙烯/聚碳酸酯(PS/PC)共混体系的结构与力学性能及彼此之间的关系,讨论了增容剂氢化苯乙烯-丁二烯共聚物接枝马来酸酐(SEBS-g-MAH)对共混物相容性及力学性能的影响。差示扫描量热分析表明,PS/PC表现出2个玻璃化转变温度(Tg),而PS/PC/SEBS-g-MAH则只有1个Tg。扫描电镜的分析结果表明,PS为连续相,PC为分散相,而且SEBS-g-MAH的加入使PS与PC的界面变得模糊。可见增容剂对共混体系具有明显的增容作用。共混物的冲击强度在PC用量大于30 phr时明显提高,拉伸强度和冲击强度在低PC含量时较纯PS有一定程度的下降,但随PC含量增加又逐渐提高;增容共混物的力学性能比未增容的有较大提高;当PC用量约40 phr时共混物具有最好的综合性能。  相似文献   

9.
PPO/PA6纳米共混物的制备及结构表征   总被引:1,自引:0,他引:1  
采用一种新的制备PPO/PA6共混物的方法,从己内酰胺(CL)单体出发,在聚苯醚(PPO)存在下阴离子开环聚合己内酰胺,由于其中一部分PPO主链上接枝了活性苯酯基团,能促进PA6链在其上增长,从而同时形成了PA6均聚物与PPO—g—PA6接枝共聚物,实现了原位聚合与原住增容的同步实施,并用SEM对其微观相形态结构进行了研究,控制共混条件可制备PA6纳米分散的PPO/PA6共混物。  相似文献   

10.
在聚乳酸(PLA)/聚苯乙烯(PS)/线型低密度聚乙烯(LLDPE)(质量比40:30:30)共混物中加入酸酐化LLDPE/PS(质量比50:50)增容母料,考察增容母料用量对共混物力学性能、热性能、动态流变性能、微观形貌和孔径分布的影响。红外分析表明,共混体系加入酸酐化增容母料后有(LLDPE-g-PS)-g-PLA接枝共聚物生成;力学性能测试表明,在加入质量分数10%的增容母料后,相较于简单共混物,其拉伸强度提高了160.5%,断裂伸长率提高了184%,继续增大增容母料用量,力学性能提升并不明显;热性能分析表明,共混物中的PLA相结晶规整度提高,加入10%增容母料后,PLA的熔点(Tm)上升了2.03℃,LLDPE的结晶温度(TC)上升了1.23℃;动态流变测试结果表明,随着增容母料用量的增大,共混物的储能模量(G’)、损耗模量(G’’)和复数黏度(η*)均有上升,损耗因子(tanδ)下降;扫描电镜分析表明,加入增容母料使共混物相分散均匀、相尺寸减小;压汞仪测试表明,共混物经正庚烷、环己烷抽提后,遗留的“PLA”形成了分级多孔结构,增容母...  相似文献   

11.
采用氟橡胶接枝乙烯基三乙氧基硅烷(FKM-g-VTEO)作为增容剂,制备性能良好的氟橡胶(FKM)/硅橡胶(MVQ)共混物。研究增容剂用量对FKM/MVQ共混物力学性能、高温压缩永久变形和耐油性能的影响,并采用动态机械热分析仪(DMA)对共混物进行表征。结果表明,随着增容剂用量的增加,共混物的力学性能提高,高温压缩永久变形降低,耐油性能改善。DMA分析结果表明,增容剂对FKM/MVQ共混物具有明显的增容作用。  相似文献   

12.
反应挤出法制备PPO/PA6/SEBS共混物的研究EI   总被引:9,自引:1,他引:9  
研究了 PPO- g- MA对 PPO/PA6 /SEBS共混体系的原位增容作用和 SEBS对 PPO/PA6的增韧作用。 PPO/PA6 /SEBS共混物的 TEM结果表明 ,SEBS分散在 PPO中 ,而 PPO又分散在 PA6基体中。 TEM和 SEM的结果均表明 ,PPO- g- MA细化了分散相的相畴 ,增加了界面强度 ;冲击实验的结果表明 ,PPO- g- MA和 SEBS的用量分别为 2 0 %~ 2 5 %和 10 %~ 15 %时 。  相似文献   

13.
PA6/PTT共混物的吸水性和力学性能   总被引:2,自引:0,他引:2  
由螺杆挤出机制备了尼龙6(PA6)和聚对苯二甲酸丙二醇酯(PTT)的共混物PA6/PTT。通过浸水实验,结合扫描电镜观察和热分析,研究了不同组分PA6/PTT共混物的吸水性能,并进行了相关力学性能测试。结果表明,PA6/PTT共混物吸水率随PTT含量增加而减小,即PTT的加入有效抑制了PA6的吸水率;在相同吸水条件下,PA6/PTT共混物的一般力学性能明显优于PA6,当PTT含量为20%时,共混物吸水后的拉伸、弯曲强度分别较PA6提高了20.98%和71.73%。  相似文献   

14.
采用一系列不同甲基丙烯酸环氧丙酯(GMA)含量的苯乙烯-甲基丙烯酸环氧丙酯共聚物(SG)增容尼龙6(PA6)/间规聚苯乙烯(sPS)(80/20)共混物,通过扫描电镜及拉伸实验考察了SG共聚物中GMA的含量对共混物形态结构及力学性能的影响。形态观察显示,SG共聚物可以有效地降低PA6/sPS共混物中分散相的尺寸,增加两相界面间的粘接力;SG共聚物中GMA的含量对其增容效果有较大影响,质量分数为5%左右时,SG共聚物对PA6/sPS共混物的增容效果最佳。拉伸实验结果表明,PA6/sPS共混物的拉伸强度及模量随着SG共聚物的加入而增加,但其断裂伸长率在较高SG含量时则有所下降。  相似文献   

15.
将不同配比的氢化聚苯乙烯-聚丁二烯-聚苯乙烯嵌段共聚物(SEBS)、聚苯醚(PPO)、KN树脂通过双螺杆挤出机进行熔融共混得到SEBS/PPO/KN三元共混物。通过原子力显微镜观察不同配比的三元共混物的相态结构,并研究其热力学性能、力学性能和流变性能。结果表明,随着KN树脂用量的增加,分散相越容易结晶,熔点逐渐升高,单位热焓也逐渐升高,材料的拉伸强度呈现先上升后降低的趋势,断裂伸长率逐渐增加,熔融指数呈现显著的增长趋势。当KN树脂用量小于40份时,三元共混物的相态结构为“海岛结构”;当KN树脂用量为40份时,SEBS/KN二元共混物的相态形成“双连续”相态。  相似文献   

16.
通过熔融共混制备了SMA增容的PA6/PBT共混物,研究了增容剂对PA6/PBT共混体系聚集态结构及力学性能的影响。研究表明,SMA能有效地提高PA6/PBT共混体系两相间的相容性,降低分散相尺寸,使分散相分布均匀,同时有效地提高了共混体系的力学性能。通过对试样进行热处理,探讨了不同热处理温度对PA6/PBT共混合金力学性能的影响。结果表明,热处理能提高共混物的拉伸强度,但导致共混物的缺口冲击强度下降。  相似文献   

17.
报道了聚丙烯(PP)和乙烯-醋酸乙烯共聚物(EVA)及填料对改性氧化沥青共混改性的影响,分析了改性组分的含量及种类对改性后沥青的力学性能及结构形态的影响规律。当氧化沥青-g-MAH∶PP∶EVA∶碳酸钙=63∶9∶27∶1时,共混物的力学性能最优,断裂应变达到230%左右。  相似文献   

18.
用2种组成相近而相对分子质量不同的苯乙烯-乙烯/丁烯-苯乙烯共聚物(SEBS)增容高密度聚乙烯/间规聚苯乙烯(m(HDPE)/m(sPS)=80/20)共混物。利用增容剂(SEBS)与共混物组分之间溶解性的差异,以四氢呋喃(THF)为溶剂选择刻蚀掉增容剂相,采用扫描电镜(SEM)观察了共混物的形态结构及增容剂在共混物中的分布情况;结合拉伸测试,阐明了增容剂的相对分子质量及其分布对HDPE/sPS共混物力学性能的影响。结果表明,较低相对分子质量的SEBS主要分布在两相界面,并能显著提高两相界面粘接性,进而能有效提高共混物的拉伸强度;而较高相对分子质量的SEBS更倾向以胶束形式分散在HDPE基相中,不能明显改善界面强度,但却有利于改善共混物的韧性。  相似文献   

19.
连续氧化铝纤维增强陶瓷基复合材料是航空航天领域理想的热结构材料之一,复合材料的力学性能很大程度取决于连续氧化铝纤维的力学性能,目前不同热处理环境对连续氧化铝纤维力学性能及微观结构的影响鲜有报道。本研究以Nextel 610连续氧化铝纤维为对象,研究热处理气氛、热处理温度和热处理时间等因素对其力学性能及微观结构的影响。结果表明:空气气氛下,当热处理温度由1000℃升高至1400℃时,纤维的单丝拉伸强度由2.58 GPa下降至0.94 GPa,表面晶粒尺寸由97.3 nm增大至184.1 nm;水汽气氛下,当热处理温度由1000℃升高至1400℃时,纤维的单丝拉伸强度由2.18 GPa下降至0.95 GPa,表面晶粒尺寸由91.3 nm增大至171.7 nm。水汽气氛中的H_(2)O分子高温下向纤维内部扩散,使纤维内部缺陷增多,导致热处理工艺参数相同时,水汽气氛下纤维的单丝拉伸强度低于空气气氛,纤维表面晶粒在水汽气氛下的生长速率小于空气气氛。  相似文献   

20.
研究了固溶态0Cr13铁素体不锈钢在室温1-4道次等径转角挤压(ECAP)过程中的结构演化和力学性能.结果表明:0Cr13钢在挤压变形过程中晶粒的细化行为在介观上表现为在形变带作用下的晶粒分割;微观上则表现为位错分割机制下的晶粒碎化。四道次后形成了均匀的等轴超细晶结构,平均晶粒尺寸约349 nm。室温拉伸和冲击测试结果表明,实验钢在一道次EACP加工后强度提高,韧塑性下降。后续更高道次挤压变形在使样品强度继续提高的同时,冲击韧性也适当改善了。高道次(3、4道次)样品的冲击韧性大致可以恢复到挤压加工前的~30%。因晶粒细化和动态回复而导致的静力韧度提高和断裂机制转变,是造成高道次样品冲击韧性改善的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号