首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以甲基丙烯酸三氟乙酯(TFEMA)为疏水单体,丙烯酰胺(AM)为主单体,甲基丙烯酰氧乙基三甲基氯化铵(DMC)为阳离子单体,以过硫酸铵和亚硫酸氢钠为复合引发剂,采用自由基胶束聚合法合成了共聚物P(AM-DMC-TFEMA);采用红外光谱、核磁共振氢谱、环境扫描电镜对其结构进行了表征。通过上清液透过率以及Zeta电位的测试考察了该共聚物P(AM-DMC-TFEMA)对硅藻土悬浮液的絮凝效果并结合絮凝剂的分子结构以及絮凝剂的作用理论,对共聚物P(AM-DMC-TFEMA)的絮凝机理做出了解释。结果表明,在阳离子单体含量为30%,疏水单体含量为15%,特性黏数为627.05mL/g,投加量为16mg/L时,该聚合物对硅藻土的絮凝效果最优,上清液透过率可达到97.31%。并且与实验室合成的PAM与P(AM-DMC)相比,该共聚物具有良好的絮凝效果。  相似文献   

2.
以丙烯酰胺(AM)和自制疏水大单体(MM)及十二烷基苯磺酸钠(SDBS)为原料,利用胶束共聚的方法,合成了一系列疏水缔合水凝胶。利用傅里叶变换红外光谱对凝胶结构进行了表征,并对凝胶的溶胀行为进行了测试。结果表明,室温下,水凝胶的溶胀率随疏水大单体含量的增加而增大,溶胀达到平衡所需时间缩短。随温度的升高,溶胀所需要的时间缩短;随SDBS浓度的增大,凝胶的溶胀率降低;1%的NaCl水溶液中,凝胶的最大溶胀率显著减小,继续增大NaCl水溶液的浓度,最大溶胀率无明显改变。由于起物理交联作用胶束的缔合和解缔合作用使凝胶具有良好的重塑性能和自愈合性能。  相似文献   

3.
氟碳改性阳离子PAM的溶液性能与应用   总被引:5,自引:0,他引:5  
以甲基丙烯酸十二氟庚酯(DFMA)为共聚单体,与丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)通过自由基胶束共聚法制得氟碳改性阳离子聚丙烯酰胺FPAD.研究了共聚物组成对FPAD溶液性能的影响,以及FPAD对造纸白水的絮凝效果.实验表明,FPAD水溶液中存在强烈的分子间缔合作用;当DFMA含量1.0 mol%、DMC含量15 mol%、引发剂用量0.03 mol%、表面活性剂与疏水单体的摩尔比值(SMR)20时,FPAD的特性黏数为677 mL/g,表现黏度达到18.0 mP·s以上;当添加量20mg/L、pH值6.0时,透光率可达99%.  相似文献   

4.
采用活性阴离子聚合、原子转移自由基聚合(ATRP)溶液聚合法,分别对甲基丙烯酸2,2,2-三氟乙酯(TFEMA)进行分子设计,合成了结构明确的PTFEMA.采用IR,NMR,DSC对聚合物的结构与性能进行了表征;采用GPC对聚合物的分子量及其分子量分布进行了考察.  相似文献   

5.
采用强氧化剂预处理-氧化还原引发接枝聚合法将丙烯酸(AA)接枝到聚丙烯(PP)镍氢电池隔膜表面,以改善其亲水性。扫描电镜(SEM)和衰减全反射红外光谱(ATR-FT-IR)分析结果表明,已制得PP-g-AA改性隔膜。考察了不同接枝率改性隔膜的亲水性和电导率,结果表明,接枝丙烯酸显著改善了其亲水性,接枝率为4.10%时隔膜亲水性最好,对去离子水和KOH水溶液(密度1.30g/cm3)的接触角从PP基膜的102.2°和113.5°降至0°和23.9°;接枝率为2.82%和4.10%改性隔膜的电导率达到基膜的1.5倍以上。镍氢电池循环测试表明,改性隔膜装配的电池具有较高的电池容量和循环寿命。综合考虑,接枝率为4.10%时隔膜性能最佳。  相似文献   

6.
用α-溴代丙酸乙酯(EPN-B)/氯化亚铜(CuCl)/联二吡啶(bpy)作为ATRP催化引发体系,环己酮为溶剂,进行甲基丙烯酸2,2,2-三氟乙酯(TFEMA)的原子转移自由基聚合(ATRP),得到单分散PTFEMA-X预聚体.并以此预聚体为大分子引发剂引发苯乙烯聚合,得到分子质量可控、分子质量分布窄的聚甲基丙烯酸2,2,2-三氟乙酯-b-聚苯乙烯嵌段共聚物,考察了大分子引发剂的分子质量、配位剂等对聚合过程的影响.并用1H-NMR、FTIP、GPC、DSC等时产物的结构与性能进行了表征.  相似文献   

7.
为解决植物纤维素和疏水基材界面"不相容"问题,采用吸附阳离子核壳乳胶粒子对蔗渣纤维素进行疏水改性。透射电镜和动态光散射测试表明,乳液粒径分布较宽。研究pH和温度对纤维吸附性能的影响发现,吸附量随pH的增大而减小。吸附过程中由于粒径分布较宽,出现两段吸附,吸附过程主要受静电、氢键、π-π键和链缠结的影响。通过纤维素的扫描电镜(SEM)、红外(FT-IR)、比表面积测试等表明,乳胶粒子成功吸附到纤维素表面。改性纤维素表面接触角由0°提高到102°。改性后的纤维素可作为复合材料的增强介质。  相似文献   

8.
氟碳丙烯酸酯对聚丙烯酰胺的改性   总被引:4,自引:0,他引:4  
用N-丙基,N-羟乙基全氟辛基磺酰胺(FC)与丙烯酸反应得到了N-丙基,N-羟乙基全氟辛基磺酰胺丙烯酸酯(FCA),再通过与丙烯酰胺共聚得了氟碳改性聚丙烯酰胺P(AM—FCA)。考察了共聚物中FCA单体含量、溶液温度、盐浓度、P(AM—FCA)质量分数对溶液粘度的影响.结果表明.在实验范围内.共聚物溶液的表现粘度随P(AM—FCA)质量分数和盐浓度的增加而增加,随溶液温度和FCA单体含量的增加出现极值,共聚物和聚丙烯酰胺相比,具有良好抗温、耐盐性能,可望作为三次采油用驱油荆。  相似文献   

9.
利用表面引发原子转移自由基聚合(SI-ATRP)将丙烯酸盐聚合物接枝到聚酯(PET)薄膜表面。研究不同反应温度和反应时间条件下接枝改性对聚酯薄膜表面组成、结构和性能的影响。通过衰减全反射-傅里叶变换红外光谱仪、X射线光电子能谱仪、扫描电子显微镜和热失重仪对接枝改性前后的聚酯薄膜进行相关表征。测试结果表明,反应温度和反应时间对聚酯薄膜的接枝百分率和接触角有一定程度的影响,接枝百分率最大为2.58%,接触角为110°。热失重数据得出,改性薄膜的初始分解温度和引发剂的一致,为395℃,表明接枝的丙烯酸盐聚合物对聚酯薄膜本体热性能影响不大。  相似文献   

10.
采用电子转移活化再生催化剂原子转移自由基聚合(ARGET-ATRP)方法,设计和制备了适合涂料用的线型、三臂和六臂星形聚丙烯酸酯。凝胶渗透色谱和差示扫描量热分析结果表明合成的聚丙烯酸酯相对分子质量与理论值相近,分布较窄,玻璃化转变温度适中。以这些树脂为基体,制得石墨烯/星形聚丙烯酸酯纳米复合涂料。相对于石墨烯/线型聚丙烯酸酯纳米复合涂料漆膜,石墨烯/星形聚丙烯酸酯纳米复合涂料漆膜具有低至0.8%的导电逾渗阈值。流变测试表明,星形聚丙烯酸酯溶液的黏度明显低于线型聚丙烯酸酯溶液的黏度,石墨烯的加入引起星形聚丙烯酸酯溶液的黏度增加程度远小于线型聚丙烯酸酯溶液黏度的增加程度。透射电镜和激光粒度分析结果证实石墨烯在星形聚丙烯酸酯中的分散性好于线型聚丙烯酸酯。石墨烯可以提高漆膜的模量、玻璃化转变温度及其它的基本物理性能。  相似文献   

11.
以三羟甲基丙烷为核分子,2,2-二羟甲基丙酸为AB2型单体,合成了超支化聚酯(HBP-3)。以月桂酸和苯甲酸为改性剂得到改性超支化聚酯HBP-4、HBP-5、HBP-6和HBP-7。采用红外光谱(FT-IR)、核磁共振(1H-NMR)和凝胶渗透色谱(GPC)对HBP-3的结构和分子量进行表征并测试了超支化聚酯的特性黏度,发现由三羟甲基丙烷合成了超支化聚酯的支化度在0.4-0.5之间,分子量接近理论值,分散性为1.75,特性黏度为6.35 mL/g。以甲苯二异氰酸酯三聚体为固化剂,考察了改性超支化聚酯的交联涂膜性能,发现单独用月桂酸改性制成的HBP-4涂膜硬度和附着力差,用苯甲酸改性得到的HBP-5在常温下呈固态,而以月桂酸和苯甲酸混合改性时则可以得到光泽度、附着力和柔韧性优异的涂膜。  相似文献   

12.
以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(HTEMPO)为引发剂,采用配位-插入开环聚合(CROP)的方法引发ε-己内酯聚合,然后利用氮氧稳定自由基聚合(NMRP)调控苯乙烯聚合得到聚己内酯-聚苯乙烯嵌段共聚物(PCL-b-PS),并对此过程进行了动力学研究,结果表明,聚苯乙烯链段的分子量可控,符合活性聚合特征。通过GPC测定,共聚物的分子量分布范围是1.26~1.37。在FT-IR图上可以看到属于PCL-b-PS的特征峰,分别为3470 cm-1、1726 cm-1、1192cm-1、1047 cm-1、1600 cm-1、1493 cm-1和1453 cm-1处的羟基、羰基C-O-C的对称和不对称伸缩振动、苯环的骨架振动吸收峰。在1H-NMR谱图上,有δ=1.3~1.68、4.08的己内酯亚甲基氢的化学位移和6.30~7.20苯环上氢的化学位移。  相似文献   

13.
以八甲基环四硅氧烷(D4)、四甲基四氢环四硅氧烷(D4H)和六甲基二硅氧烷(MM)为原料,以强酸性离子交换树脂为催化剂,采用开环共聚法合成了一系列相对分子质量和含氢量可控、相对分子质量分布较窄的含氢聚甲基硅氧烷(PDMS-co-PHMS)。研究了催化剂种类、反应温度、反应时间、催化剂用量、搅拌速度对产物相对分子质量、含氢量以及产率的影响,并通过正交试验对工艺条件进行优化,实现了一系列具有不同含氢比例的含氢聚甲基硅氧烷的可控合成;并利用红外光谱、核磁共振和凝胶渗透色谱对产物进行分析表征。结果表明,以强酸性离子交换树脂为催化剂,可控合成了相对分子质量为1.19×103~3.01×103的含氢聚甲基硅氧烷,最佳反应条件是反应温度为60℃,反应时间为12h,催化剂质量分数为1%,搅拌速度为400 r/min。  相似文献   

14.
以硝酸铈铵(CAN)作为引发剂,采用甲基丙烯酸缩水甘油酯(GMA)通过悬浮接枝共聚法对水溶性聚乙烯醇(PVA)纤维进行表面改性。讨论了GMA添加量、CAN浓度、H+浓度对PVA纤维接枝率(GR)的影响,以及GR对纸张强度的影响。研究结果表明,当GMA浓度为0.2mol/L,CAN浓度为6×10-3mol/L,H+浓度为0.1mol/L时,GR为35%,纸张获得较佳强度,耐折度为56次,干拉力为68.2N,湿拉力为17.8N。FT-IR表明,GMA在原纤维表面发生了接枝共聚反应。SEM表明,改性后PVA纤维表面由槽状结构变为鳞片状结构。  相似文献   

15.
以含溴的细菌纤维素气凝胶为引发剂,维生素C(Vc)为还原剂,N,N,N',N,'N″-五甲基二亚乙基三胺(PMDETA)/溴化铜(Cu Br2)为催化剂,通过电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)方法,制备了含聚甲基丙烯酸缩水甘油酯(PGMA)刷的细菌纤维素气凝胶规整接枝共聚物。采用能谱对大分子引发剂元素含量进行测定,并利用红外光谱、X射线衍射、扫描电镜、热失重分析对其结构和性能进行表征。结果表明,接枝聚合反应可控,大分子引发剂Br元素含量为6.77%;GMA接枝聚合后纤维直径增大且在纤维表面形成覆盖层;起始热分解温度由205℃升高到246℃,热稳定性增强。  相似文献   

16.
氢化双酚A型环氧树脂(AL-3040)与端羟基聚二甲基硅氧烷(HTPDMS)在偶联剂(KH-550)作用下反应制得AL-3040环氧树脂-HTPDMS嵌段共聚物。以此共聚物作为增容剂改善AL-3040与HTPDMS之间的相容性,引入柔性Si-O-Si链段对环氧树脂进行增韧改性,以甲基六氢苯酐(Me HHPA)为固化剂,制备了一种高性能HTPDMS改性形状记忆环氧树脂(SMEP)。研究发现,HTPDMS能明显改善AL-3040环氧树脂韧性。随着增容剂用量的增加,SMEP的拉伸强度和玻璃化温度(Tg)随之下降,冲击强度、断裂伸长率逐渐上升。随着增容剂用量增加,SMEP的形状固定率随之下降,形状回复率呈上升趋势。重复10次形状记忆性能测试,形状固定率和形状回复率保持在96%以上。  相似文献   

17.
常规的熔喷吸油材料存在吸油倍率低、保油性能较差和强力低等缺点,限制了其作为吸油材料的应用与发展,而通过改性常规熔喷吸油材料来提升其性能的研究受到广泛关注。文中对改性熔喷吸油材料的研究进展进行了全面综述,重点介绍了共混改性、表面改性、复合改性3种改性方法对熔喷吸油材料性能的影响,以及以熔喷吸油材料为基体,通过以上改性方法改变其组分和结构,从而提高材料的吸油倍率、保油率和强力。最后,根据现有吸油材料的发展,对熔喷吸油材料所面临的困难提出了应对策略,展望了其未来的发展方向。  相似文献   

18.
采用二元单体胶束共聚,合成了孪尾疏水改性丙烯酰胺/N,N-二辛基丙烯酰二元共聚物[简称P(AM/DiC8AM)],成功引入了疏水单体.用FTIR分析了各基团峰的归属,证明了共聚物为带有疏水基团的二元共聚物.特性粘数的测定结果表明:分子量M、疏水单体含量[H]增加,特性粘数[η]增大,Huggins常数KH减少,平均线团密度ρequ减少;但随疏水链嵌段长度NH的增加,[η]们增大,KH同样增大.随疏水单体含量[H]、分子量M、疏水链的嵌段长度NH增加,各聚合物溶液临界缔合浓度cac降低,疏水缔合的机率增加.  相似文献   

19.
首先以乙二醇单乙烯基醚为成核分子引发缩水甘油开环聚合,优化反应条件,合成中心含乙烯氧基的超支化聚缩水甘油醚;后将其磺酸酯化,在40℃,氟醇与磺酸酯基团的摩尔比为1.5:1时,用全氟己基乙醇亲核取代合成出具有"树枝状"结构的含氟单体,探讨了各步反应影响因素,并用傅里叶变换红外光谱进行了结构表征。利用该"树枝状"新型结构,大量氟链段可稳定聚集于表面,为进一步制备获得具有优异拒水拒油性能的含氟聚合物提供了有利的基本条件。  相似文献   

20.
以N-异丙基丙烯酰胺(NIPAM)与丙烯酸丁酯(BA)为聚合单体,采用可逆加成-断裂链转移(RAFT)聚合,以偶氮二异丁腈(AIBN)为引发剂,三硫代酯(TTC)为链转移试剂制成一系列的温敏性PBA-b-PNIPAM-b-PBA三嵌段共聚物。采用核磁共振表征了共聚物的结构;并采用表面张力仪、分光光度计和动态光散射方法研究了自组装所得胶束的形态和温敏特性,其中所有嵌段聚合物的临界胶束浓度(CMC)均小于1.6×10-3mg/mL,嵌段共聚物具有表面活性;嵌段共聚物具有显著的温敏性,随BA/NIPAM质量比增加其低临界溶解温度(LCST)越低;升高温度胶束粒径先减小后增大,在LCST时有最小值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号