首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor (hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

2.
A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.  相似文献   

3.
Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2 NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoS2 NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2 NiS Ag anode material) to increase anode electrical conductance instead of applying a thin laver of platinum on the top of anode.  相似文献   

4.
质子传导陶瓷电解质燃料电池特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
谭小耀     孟波     杨乃涛     K.Li 《中国化学工程学报》2005,13(1):107-117
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.05M0.05O3-α(M=Yb, Y) cells.  相似文献   

5.
Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70˚C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air hu-midifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.  相似文献   

6.
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2 NiS Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.  相似文献   

7.
Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking (FCC) riser reactors was numerically analyzed using a four-lump mathematical model. Effects of the cluster porosity, inlet gas velocity and temperature, and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature, gases, and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented. The reaction rates from vacuum gas oil (VGO) to gasoline, gas and coke of individual particle in the cluster are higher than those of the isolated particle, but it reverses for the reaction rates from gasoline to gas and coke. Less gasoline is produced by particle clustering. Simulated results show that the produced mass fluxes of gas and gasoline increase with the operating temperature and molar concentration of VGO, and decrease due to the formation of coke.  相似文献   

8.
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals (ethylene, propyl-ene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of high-temperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature (up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas (LPG) and naphtha are used as a feedstock. The detailed data are obtain-ed on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases (LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantial y higher than in current technology.  相似文献   

9.
A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.  相似文献   

10.
Natural gas is transported from producing regions to consumption regions by using transmission pipelines at high pressures. At consumption regions, the pressure of natural gas is reduced in city gate stations(CGSs). Before the pressure reduction process, the temperature of natural gas is increased usually by using a water bath heater,which burns natural gas as fuel, to protect against freezing of natural gas. These types of heat exchangers have a low efficiency and consume a lot of fuel to generate the required heat. In the current study, the twisted configuration of the heating coil is proposed and investigated to enhance the heat transfer through a water bath heater with a nominal capacity of 1000 m~3·h~(-1). Firstly, the implementation procedure is validated with data collected from the CGS of Qaleh-Jiq(located in Golestan province of Iran). A very good agreement is achieved between the obtained results and the real data. Then, three different twist ratios are considered to examine the twisting effects. The proposed technique is evaluated in the terms of velocity, temperature, and pressure variations, and the results are compared with the conventional case, i.e. straight configuration. It is found that both the heat transfer rate and the pressure drop augment as the twist ratio is raised. Finally, it is concluded that the twisted tubes can reduce the length of the gas coil by about 12.5% for the model with low twist ratio, 18.75% for the model with medium twist ratio, and 25% for the model with high twist ratio as compared to the straight configuration.  相似文献   

11.
This paper compares two dynamic, one-dimensional models of a planar anode-supported intermediate temperature (IT) direct internal reforming (DIR) solid oxide fuel cell (SOFC): one where the flow properties (pressure, gas stream densities, heat capacities, thermal conductivities, and viscosity) and gas velocities are taken as constant throughout the system, based on inlet conditions, and one where this assumption is removed to focus on the effect of considering the variation of local flow properties on the prediction of the fuel cell performance. The refined model consists of mass, energy, and momentum balances, and of an electrochemical model that relates the fuel and air gas compositions and temperatures to voltage, current density, and other relevant fuel cell variables. Simulations for steady-state and dynamic conditions have been carried out and the results obtained from the two models compared. For a co-flow SOFC operating on a 10% pre-reformed methane fuel mixture, with 75% fuel utilisation, inlet fuel and air temperatures of 1023 K, average current density of , and an air ratio of 8.5, the results show that, although the error incurred in the prediction of the flow properties in the first model is significant, there is good agreement between both models in terms of the overall cell performance: the maximum difference in the local temperature values is about 7 K and the cell efficiency differs by less than 1%. However, the discrepancies between the two models increase, especially in the fuel channel, when higher current density values are assigned to the cell.  相似文献   

12.
A dynamic model for a finite volume of cell based on physical principles is built in the form of a nonlinear state-space model to investigate dynamic behaviors of tubular solid oxide fuel cell (SOFC) and develop a control relevant model for further control studies. Dynamic effects induced by diffusions, intrinsic impedance, fluid dynamics, heat exchange and direct internal reforming/shifting (DIR) reactions are all considered. Cell temperature, ingredient mole fractions, etc. are the state variables and their dynamics are investigated. Dynamic responses of each variable when the external load changes are simulated. Simulation results show that fuel flow, inlet pressure and temperature have significant effects on the dynamic performance of SOFC. Further it is shown that, compared to other inlet flow properties, cathode side air inlet temperature has the most significant effect on SOFC solid phase temperature and performance. Compared with inlet pressures and temperatures, the effect of flow velocity is not significant. Simulation also indicates that the transient response of SOFC is controlled mainly by the dynamics of cell temperature owing to its large heat capacity.  相似文献   

13.
Spatially inhomogeneous distribution of current density and temperature in solid oxide fuel cells (SOFC) contributes to accelerated electrode degradation, thermomechanical stresses, and reduced efficiency. This paper presents a combined experimental and modeling study of the distributed electrochemical performance of a planar SOFC. Experimental data were obtained using a segmented cell setup that allows the measurement of local current‐voltage characteristics, gas composition and temperature in 4 × 4 segments. Simulations were performed using a two‐dimensional elementary kinetic model that represents the experimental setup in a detailed way. Excellent agreement between model and experiment was obtained for both global and local performance over all investigated operating conditions under varying H2/H2O/N2 compositions at the anode, O2/N2 compositions at the cathode, temperature, and fuel utilization. A strong variation of the electrochemical performance along the flow path was observed when the cell was operated at high fuel utilization. The simulations predict a considerable gradient of gas‐phase concentrations along the fuel channel and through the thickness of the porous anode, while the gradients are lower at the cathode side. The anode dominates polarization losses. The cell may operate locally in critical operating conditions (low H2/H2O ratios, low local segment voltage) without notably affecting globally observed electrochemical behavior.  相似文献   

14.
In this paper, a model for a solid oxide fuel cell (SOFC) system for decentralized electricity production is developed and studied. The proposed system, operated on natural gas, consists of a planar anode supported fuel cell section and a balance of plant (BoP) which includes gases supply, a fuel processor, a heat management system, an after-burner and a power conditioning system. A reference case is defined and evaluated taking into account the state of the art of the technology and the related technical constrains. Electrical and thermal efficiency of the system, for non-reference conditions are evaluated. In particular, the effect of the deviation from the reference conditions of fuel utilization, gas temperature spring in fuel cell stack, anode off-gas recirculation rate, air inlet temperature and external pre-reforming reaction extent is analyzed. The present study revealed to be a powerful tool for evaluating the SOFC system performance under a wide range of operation and paves the way for defining control strategies in order to maintain high system efficiency under part-load operations.  相似文献   

15.
刘欣  郝晓弘  杨新华  安爱民 《化工进展》2013,32(10):2372-2376
固体氧化物燃料电池的工作状态是一个高温、高速率变化的化学反应过程,其入口气体温度的稳定性直接影响到燃料利用率和电池效率。本文提出一种改进的带有外部输入的非线性自回归积分滑动平均模型,结合两极燃料和空气的流量比、负载电流变化值来实现入口气体温度的非线性广义预测控制方法,采用了基于非线性最小二乘法的Levenberg-Marquardt算法确定该模型的参数。仿真结果表明,该模型与温度控制系统的传递函数模型相结合后能有效并迅速的获得燃料、氧化剂流量这两种操作量的预测值并使系统在较高的温度工作点当负载电流发生波动时能克服变化引起的参数偏差,保持运行时输出电压的稳定性。  相似文献   

16.
The effects of methane concentration and current load cycle on the performance and durability of integrated planar solid oxide fuel cell (IP‐SOFC) obtained from Rolls Royce Fuel Cell Systems Ltd (RRFCS) has been investigated. The IP‐SOFC was operated with hydrogen–methane fuel mixture with up to 20% methane concentration at 900 °C for short term operation of the cells with high methane concentration increased the voltage of the IP‐SOFC due to increase in Gibbs free energy. However, it degraded the performance of the IP‐SOFC in long term operation due to carbon deposition on the anode surface. The current load cycle tests were carried out with 95% H2–5% CH4 and 80% H2–20% CH4 fuel mixtures at 900 °C with a constant current of 1 A. At low methane concentration, the decrease in the IP‐SOFC voltage was observed after operating nine current load cycles (384 h). At higher methane concentration, the voltage of IP‐SOFC decreased by almost 30% just after one current load cycle (48 h) due to faster carbon deposition. So future work is therefore required to identify viable alternative materials and optimum operating conditions.  相似文献   

17.
J.‐K. Kuo 《Fuel Cells》2010,10(3):463-471
Three‐dimensional simulations based on a multi‐physics model are performed to examine the thermofluidic and electrochemical characteristics of a tubular, anode‐supported solid oxide fuel cell (SOFC). The simulations focus on the local transport characteristics of the cathode and anode gases and the distribution of the temperature field within the fuel cell. In addition, the electrochemical properties of the SOFC are systematically examined for a representative range of inlet gas temperatures and pressures. The validity of the numerical model is confirmed by comparing the results obtained for the correlation between the power density and the current density with the experimental results presented in the literature. Overall, the present results show that the performance of the tubular SOFC is significantly improved under pressurised conditions and a higher operating temperature.  相似文献   

18.
In this study, the flow distribution in a planar solid oxide fuel cell (SOFC) stack with external manifolds is investigated by computational fluid dynamics (CFD) technique. Three dimensional external manifold models are constructed for a SOFC stack composed of 24 cells. CFD simulations with air as operating gas are implemented for two types of stacks with different inlet manifolds, including the manifold with three tube inlets (T‐manifold) and the manifold with a gas chamber on top (C‐manifold). The influences of different parameters such as channel resistance and gas feeding rate on flow distribution are studied. Modeling results indicate that the increase of channel resistance and a lower gas feeding rate can respectively improve the uniformity factor of T‐manifold and C‐manifold from 0.963 to 0.995 and 0.989 to 0.998. For a given channel resistance, the pressure distribution in the inlet manifold plays a dominant role in the flow distribution. In addition, flow distribution in the stack with C‐manifold is generally more uniform than the stack with T‐manifold. Furthermore, flow characteristics of the two type inlet manifolds are investigated by measuring velocity distribution of the gas at manifold outlets using a hot‐wire anemometer.  相似文献   

19.
This paper investigates the performance of a planar cathode-supported solid oxide fuel cell (SOFC) with composite electrodes using a detailed numerical model. The methane reforming reaction is included in the model and takes place mostly in the porous, thin anode at the high operating temperature of 800-1000°C. A single computational domain comprises the fuel and air channels and the electrodes-electrolyte assembly eliminating the need for internal boundary conditions. The equations governing transport and chemical and electrochemical processes for mass, momentum, chemical and charged species and energy are solved using Star-CD augmented by subroutines written in-house. The operating cell voltage is determined by the potential difference between the cathode and the anode, whose potentials are fixed. Results of temperature, chemical species, current density and electric potential distribution for a co-flow configuration are shown and discussed. It is found that the sub-cooling effect observed in anode-supported cells is almost ameliorated, making the cathode-supported cell favorable from the viewpoint of material stability.  相似文献   

20.
A new design for the solid oxide fuel cell (SOFC) planar stack is proposed to minimise the thermal gradients in the cell. This design involves including a secondary air channel with flow in the counter direction to the cathodic air channel. The effectiveness of the new design is tested by means of a tank in series reactor (TSR) model of the SOFC. It is found that the new design is capable of reducing the steady state temperature difference across the cell to less than 2 K over a range of voltages, while satisfying the requirements on fuel utilisation (FU) and cell average temperature. This is achieved by manipulating the primary air channel inlet flow rate and the secondary air channel inlet temperature. More modelling and experimental studies are required to further investigate the proposed design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号